Using machine learning methods to classify tasks by priority in IT projects

Authors

  • Tatyana Unuchak Univerza v Mariboru, Fakulteta za organizacijske vede
  • Mirjana Kljajić Borštnar Univerza v Mariboru, Fakulteta za organizacijske vede
  • Yauhen Unuchak Univerza v Mariboru, Fakulteta za organizacijske vede

DOI:

https://doi.org/10.31449/upinf.240

Keywords:

IT-project management, task prioritisation, machine learning, multiclass classification, data imbalance

Abstract

Prioritizing and classifying tasks remain a challenge in effective project management. There are many classic approaches to prioritization. However, all these techniques are labour intensive, subjective and lack flexibility. In this paper we investigate machine learning based approaches for automatic prioritization of tasks in IT projects. We explore how machine learning methods can be used to help project managers prioritize tasks in IT projects more efficiently. We developed a classification model for automatically determining priorities based on a dataset of over 1,000,000 project task records. The problem we addressed is multi-class, with the majority of cases labelled with the highest priority, which presents a challenge both in modelling and in the efficiency of IT project management. To address these challenges, we explored strategies to enhance classification performance, including reducing the number of priority classes. Our findings demonstrate that simplifying the priority structure improves the model’s accuracy and contributes to more efficient task management in IT projects.

Author Biographies

Tatyana Unuchak, Univerza v Mariboru, Fakulteta za organizacijske vede

Tatyana Unuchak je magistrica organizatorka informatičarka in strokovnjakinja na področju razvoja spletnih in mobilnih rešitev. Raziskovalni interesi so povezani s strojnim učenjem in z izboljšanjem procesov projektnega vodenja.

Mirjana Kljajić Borštnar, Univerza v Mariboru, Fakulteta za organizacijske vede

Mirjana Kljajić Borštnar je redna profesorica za področje informacijskih sistemov na Fakulteti za organizacijske vede Univerze v Mariboru. Njeno raziskovalno delo je usmerjeno v sisteme za podporo odločanju, odkrivanje znanja v podatkih in strojno učenje ter organizacijsko učenje. Je glavna urednica revije Uporabna informatika, podpredsednica Slovenskega društva INFORMATIKA, sovodja programskih odborov mednarodnega simpozija operacijskih raziskav in Blejske e-konference ter članica izvršnega odbora AI4Slovenia.

Yauhen Unuchak, Univerza v Mariboru, Fakulteta za organizacijske vede

Yauhen Unuchak je magister organizator informatik in strokovnjak na področju avtomatiziranega testiranja in testiranja zmogljivosti programske opreme. Raziskovalni interesi so povezani z avtomatiziranim testiranjem, sistemi menedžmenta kakovosti, korporativnimi informacijskimi sistemi, velepodatki in napovedno analitiko. Eden od avtorjev knjige »IT-Startup: 10 nasvetov za začetnike«.

Published

2025-01-09

How to Cite

[1]
Unuchak, T., Kljajić Borštnar, M. and Unuchak, Y. 2025. Using machine learning methods to classify tasks by priority in IT projects . Applied Informatics. 33, 1 (Jan. 2025). DOI:https://doi.org/10.31449/upinf.240.

Issue

Section

Scientific articles