Anet1: post-processing of ensemble weather forecasts using neural networks

Authors

  • Peter Mlakar Univerza v Ljubljani, Fakulteta za računalništvo in informatiko
  • Janko Merše Slovenian Environment Agency
  • Jana Faganeli Pucer Univerza v Ljubljani, Fakulteta za računalništvo in informatiko

DOI:

https://doi.org/10.31449/upinf.211

Keywords:

machine learning, artificial intelligence, ensemble weather forecast, post-processing

Abstract

Ensemble forecast post-processing plays a crucial role in generating more accurate probabilistic weather forecasts. Traditional methods estimate parameters of a parametric distribution separately for each location or lead time while assuming the target distribution of the post-processed weather variable. We propose a novel, neural network-based approach, denoted as ANET1, that produces forecasts jointly for all locations and lead times. Our model post-processes individual ensemble members and uses their latent encodings to estimate the parameters of a predictive normal distribution. To evaluate our method, we conduct temperature forecast post-processing for stations in a sub-region of western Europe using the EUPPBench benchmark. Our results demonstrate that ANET1 showcases state-of-the-art performance, improving upon existing methods in challenging mountainous regions. Compared to the two best methods, EMOS and DVQR, ANET1 exhibits better continuous ranked probability score and quantile loss, resulting in tangible improvements in the calibration of the forecast.

Author Biographies

Peter Mlakar, Univerza v Ljubljani, Fakulteta za računalništvo in informatiko

Peter Mlakar je doktorski študent Univerze v Ljubljani, Fakultete za računalništvo in informatiko. Hkrati je zaposlen na Agenciji Republike Slovenije za okolje, kjer se raziskovalno ukvarja z izboljšanjem vremenske napovedi z uporabo strojnega učenja.

Janko Merše, Slovenian Environment Agency

Janko Merše je univerzitetni diplomirani fizik meteorološke smeri in na Agenciji Republike Slovenije za okolje vodi Oddelek za meteorološke, hidrološke in oceanografske izdelke.

Jana Faganeli Pucer, Univerza v Ljubljani, Fakulteta za računalništvo in informatiko

Jana Faganeli Pucer je docentka na Fakulteti za računalništvo in informatiko. Njeno raziskovalno delo je osredotočeno na strojno učenje, predvsem na aplikacijo metod strojnega učenja v okoljskih znanostih. Več let sodeluje z Agencijo Republike Slovenije za okolje na področju kakovosti zraka.

Published

2023-11-02

How to Cite

[1]
Mlakar, P., Merše, J. and Faganeli Pucer, J. 2023. Anet1: post-processing of ensemble weather forecasts using neural networks. Applied Informatics. 31, 3 (Nov. 2023). DOI:https://doi.org/10.31449/upinf.211.

Issue

Section

Review scientific articles