Integration of structural constraints into the gene regulatory network inference

Authors

  • Žiga Pušnik Univerza v Ljubljani, Fakulteta za računalništvo in informatiko, Večna pot 113, Ljubljana
  • Miha Moškon Univerza v Ljubljani, Fakulteta za računalništvo in informatiko, Večna pot 113, Ljubljana

DOI:

https://doi.org/10.31449/upinf.110

Keywords:

gene regulatory network, integrative data, network inference, reference network

Abstract

The inference of gene regulatory networks (GRNs) from the gene expression data remains a challenging task. The number of genes is significantly larger than the number of experiments, where each experiment contains a noise component. We impose structural constraints on the inferred gene regulatory network based on the structure of reference GRNs. Our idea is motivated by the fact that GRNs contain a vast number of patterns, i.e. motifs, that are significantly more common than in randomized networks. We impose these constraints by modifying the weights of genes contributing to the joint loss function in the regression problem. We modify weights iteratively with gradient descent. Our approach is based on the already established partial correlation method dubbed SPACE. By extracting the expected number of regulatory genes, gene degree distribution and motifs from the reference network, we have improved by a small margin the inference accuracy, precision, recall and F1 score in the inference of GRNs derived from the GRN of the E. coli bacteria.

Author Biographies

Žiga Pušnik, Univerza v Ljubljani, Fakulteta za računalništvo in informatiko, Večna pot 113, Ljubljana

Žiga Pušnik je asistent in doktorski študent na Fakulteti za računalništvo in informatiko Univerze v Ljubljani. Njegovi raziskovalni interesi so računska in sintezna biologija, strojno učenje in inferenca omrežij. Trenutno poučuje v okviru predmetov Osnove digitalnih vezij in Računalniška arhitektura

Miha Moškon, Univerza v Ljubljani, Fakulteta za računalništvo in informatiko, Večna pot 113, Ljubljana

Miha Moškon je izredni profesor na Fakulteti za računalništvo in informatiko Univerze v Ljubljani. Raziskovalno se ukvarja z vzpostavitvijo in uporabo metod za računsko-podprto modeliranje in analizo bioloških sistemov na področju sistemske biologije in medicine ter za računsko-podprto snovanje bioloških sistemov na področju sintezne biologije.

Published

2021-03-11

How to Cite

[1]
Pušnik, Žiga and Moškon, M. 2021. Integration of structural constraints into the gene regulatory network inference. Applied Informatics. 29, 1 (Mar. 2021). DOI:https://doi.org/10.31449/upinf.110.

Issue

Section

Short scientific articles