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1 INTRODUCTION
With the ever increasing popularity of the TV series 
Game of Thrones, coming mostly from it’s incredible 
plot twists and deaths of main characters, the questi-
on arises whether we can predict those deaths from a 
network analysis point of view. If we are able to pre-
dict the deaths from the data, collected from previo-
us episodes, that means that the author is very pre-
dictable, which might not be the best thing in terms 

of the show being entertaining. To predict the deaths, 
we construct a network illustrated in Figure 1, where 
nodes are characters in the show (along with other 
entities that are able to kill another character, such 
as a horse or a dragon) and connect two if one has 
murdered the other. We then try to predict whether 
a certain link between two nodes in the network ha-
ppened (removing the link from the network before-
hand). Because we are dealing with temporal data, 
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we also remove links that appear in the network after 
the link currently being predicted. We use different 
approaches to assign scores to the pairs, for example 
different link prediction indices such as the preferen-
tial attachment index (Liben-Nowell & Kleinberg, 
2007) or the Adamic-Adar index

evolving around trying to either generate synthetic 
networks or infer missing data for network-like data 
structures. Later on, that evolved into more of a re-
commendation type of approach (for example, trying 
to recommend friendships on social networks), ba-
sed on the same principles as we use to calculate 
probabilities of new links. One of the most important 
articles on the network properties that we can use to 
infer new links is written by Barabási & Albert and 
features exploring the phenomenon of preferential 
attachment (Barabási & Albert, 1999). The work on 
this property and other founding principles for link 
prediction is then briefly described inside the article 
by the same authors (Albert & Barabási, 2002). The 
next explored thing is missing data (Kossinets, 2006) 
along with further studies on missing links and spu-
rious networks (Guimerà & Sales-Pardo, 2009). An 
extensive survey on link prediction is written by 
Lü & Zhou (Lü & Zhou, 2011) where the whole fie-
ld along with all the better-known indices    to date 
is presented and the authors show how the classic 
problems in link prediction didn’t use enough net-
work properties or community structure, which was 
explored by Girvan & Newman (Girvan & Newman, 
2002). We use some of their findings in our research. 
One of the most well known indices to calculate the 
likelihood of new links appearing in a network is the 
common neighbors index (Newman, 2001) (Kossi-
nets, 2006), implying that the more common neigh-
bors nodes have, the more likely they are to form a 
link. Some other popular choices include the cosine 
distance index (also named the Salton index) (McGill 
& Salton, 1983), the Jaccard index (Jaccard, 1901), the 
preferential attachment index (Barabási & Albert, 
1999) and the Adamic-Adar index (Adamic & Adar, 
2003). For our experiments, we pick some of the most 
used indices.

For Game of Thrones specifically, some research 
has already been done in terms of finding which 
aspects of the show resonate with the viewer count 
the most and how real the characters’ interactions are 
done  by modeling the show’s houses with a network 
and exploring structural balance (Liu & Albergante, 
2017). Further studies determined who has the best 
strategic position in the show’s world (Beveridge & 
Shan, 2016), but the only article touching on death 
prediction studies (Angraal et al., 2018) for the show 
used Cox’s proportional hazard model (Cox, 1972), 
which didn’t explore any network structure properti-
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(Adamic & Adar, 2003). We also construct additio-
nal features based on various network properties and 
additional metadata and see how this influences the 
results. The network properties for the features used 
in machine learning approaches are then computed 
on a different social network of the Game of Thrones 
characters, where nodes representing characters are 
connected if the characters appear somewhat close in 
the original books’ story.

The rest of the paper is structured as follows. In 
Section 2 we provide an overview of existing litera-
ture on our studied topic. In Section 3 we describe 
the methods that we use in our work. In Section 4 
we provide the results of our work, which we then 
discuss in Section 5. In Section 6 we summarize the 
work that was done and provide some possible futu-
re improvements.

2 RELATED WORK
We use link prediction as a way to infer new links be-
tween nodes in a graph using different network pro-
perties. The field of link prediction research started 
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es, but rather used a regression approach to determi-
ne which factors introduce a higher risk of mortality 
through time. But the killers were not taken into con-
sideration here, we just know how likely a character 
is to die, thus we cannot really compare this appro-
ach with ours. This gives us a unique opportunity to 
try and use network properties along with metadata 
to better predict kills in the mythical world of the 
series, but instead of only predicting how likely so-
meone is to die, we can also predict both the killers 
and victims, on which there has not yet been much 
research.

�� .&5)0%4�"/%�/&5803,�1301&35*&4
In this section, we describe the framework used to 
test our link prediction methods. We also provide 
descriptions of some classic link prediction methods 
based on well-known properties of networks. Then, 
we introduce a new social network, described in Sub-
section 3.2.5, which connects characters if they appe-
ar close in the original story from the books. We com-
pute various network properties from that network 
and use an automatic node embedding technique to 
compute features for use in traditional machine lear-
ning approach for classification.

���� -JOL�QSFEJDUJPO�VTJOH�UIF�LJMMT�OFUXPSL
The network of kills is constructed of directed links 
between pairs of nodes i and j, where node i repre-
sents a character that killed the character represented 
by node j. The network is very small and also very 
sparse. It has 353 nodes and 194 links. By looking 
at the visualization of the network in Figure 1, we 
can see that most kills appear outside somewhat bi-
gger connected components and do not seem to be 
attributed to hubs (i.e. high degree nodes). We can 
still observe a few hubs and connected components 
around them, where a lot of kills seem to occur, but 
in the majority of cases there are just two nodes in-
volved in the kill, which on their own form a small 
two-node connected component. That gives us a clue 
as to which methods might predict kills better than 
others. We can construct an index that predicts links 
based on nodes’ out degrees. Since the in-degrees in 
the networks could be either zero or one (meaning 
alive or dead) we cannot get any additional informa-
tion from that besides whether a person can still kill 
someone or not (when they are already dead). The 
out-degree of a node can potentially be of use, sin-

ce people that kill a lot of people might also tend to 
kill more people, and those who never killed anyone 
might not be inclined to murder or kill. A plot of the 
out-degree distribution (using a logarithmic scale for 
the fractions of nodes) is shown in Figure 2.

In this subsection, we propose an evaluation fra-
mework and different indices that we use for the link 
prediction.

������ &WBMVBUJPO�GSBNFXPSL�GPS�MJOL�QSFEJDUJPO
To test how well our link prediction techniques work 
on our network, we construct a framework and pro-
vide a brief description of it here. It takes our pre-
diction index function and the network as the input 
and outputs the Area Under the ROC Curve (AUC) 
value. The prediction index function assigns a score 
sij to every link between two nodes i and j that is be-
ing tested. A high score implies a high likelihood that 
the link exists in the network and a low score implies 
a small likelihood of the link’s existence.

The core of the testing framework is the logic, 
which removes links from the network and then tries 
to predict how likely the links we have removed are 
to form as the network evolves through time. To use 
as much information as we can, we choose an episo-
de and remove links from that episode (e.g. episode 
30) and onwards from the graph. Then, we predict 
the links (i.e. kills) at that time using the information 
about kills from the previous episodes. We can then 
clone the original graph, remove links from the next 
episode in the chronology (i.e. episode 31) and pre-
dict links for that episode using the information from 
all the episodes before (including information from 
episode 30 in this example). By predicting links in 
this way, we are not using the data from the futu-
re to predict past links and we are using a lot more 
information than if we were to remove links from a 
certain episode onwards and just try to predict links 
for multiple episodes in one single iteration.
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The idea of the framework’s core implementation is 
as follows:
1. Iterate through every episode in the range from 

30 to 60, and at each step do:
 (a)  LP R remove node links (i, j) ! L after the cur-

rent episode.
 (b)  Compute sij for (i, j)!LP at the current episode 

time.
 (c) Save the scores to SP.
2. LN R randomly sample |LP| unlinked nodes (i, j) 

" L.
3. Compute sij for (i, j) ! LN and save scores to SN.
4. Compute AUC by comparing the scores assigned 

to positive samples SP and scores assigned to ne-
gative samples SN. When comparing scores, we 
assign to b the amount of times when the score 
from SP is bigger than the one from SN, and assign 
to e the number of times when the two scores are 
equal. This is counted across a random sample  
of |LP| pairs. Then, we compute the AUC as 
b + e/2

|LP|
.

������ "MJWF�JOEFY
We create a type of a baseline index by looking at the 
network’s high level properties. We check if the killer 
has an in-degree of zero and the target has an in-de-
gree of zero (i.e. killer is alive and target has not been 
killed yet). If the endpoints of a link satisfy these con-
ditions, the value of the index is 1, otherwise it is 0.

������ 1SFGFSFOUJBM�BUUBDINFOU�JOEFY
Real world networks tend to have a scale-free de-
gree distribution due to a phenomenon known as 
preferential attachment (Barabási & Albert, 1999). 
The preferential attachment index (Liben-Nowell & 
Kleinberg, 2007) is defined as sij = kikj, where ki is the 
degree of node i.  For our problem, we use out-de-
grees only, as only they provide useful information. 
The idea behind the index is in the preferential atta-
chment process — nodes are more likely to connect 
with nodes that have a high degree, thus a link be-
tween two nodes with high degrees should be assi-
gned a high score sij. We modify this definition sli-
ghtly and define a  modified preferential attachment 
index as sij = ki

(out)kj
(out), where ki

(out) is the out-degree 
of node i. The logic behind that is that the more kills 
one has to their record, the more they are inclined 
to murder and vice-versa. Additionally, we include 
the in-degree information in a modified version of 
the preferential attachment index: if the source node 
or the target node has an in-degree larger than zero 
(either the killer or the victim is already dead), a very 
��������ȱ�����ȱǻƺǈǼȱ��ȱ��������ǯȱ����� ���ǰȱ���ȱ����-
lar version of the index gets computed.

������ "EBNJD�"EBS�TJNJMBSJUZ�JOEFY
In real world networks, links tend to appear between 
nodes that have a lot of common neighbors (Watts & 
Strogatz, 1998). But due to preferential attachment, 
nodes tend to connect to higher degree nodes more 
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likely, thus making that neighbor less useful for pre-
dicting new links between two nodes. The Adamic-
-Adar similarity index (Adamic & Adar, 2003) takes 
the high degree neighbors into account and is defi-
ned as

sijȱƽȱǌx ! ̆iȱǖȱ̆j 
1

log kx
 ,

where ̆i is the neighborhood of node i and kx is the 
degree of node x. Similarly, as for the preferential at-
tachment index, we also include a modified version 
of the Adamic-Adar index, where we take into con-
sideration whether the killer or the victim is already 
dead.

������ $PNNVOJUZ�JOEFY
New links in e.g. social networks tend to appear be-
tween members that are inside of the same commu-
nity and only rarely between members of different 
communities (Girvan & Newman, 2002). We can find 
densely linked communities where people are killing 
each other the most and treat the new links in those 
communities as more likely to occur than the ones 
outside communities. So that we do not ignore links 
between communities, we can also count the amo-
unt of links that occur between two communities and 
model the inter-community densities. Let {C} be the 
set of communities output by the Leiden modularity 
optimization algorithm (Traag, Waltman, & van Eck, 
2019), and ci the community of node i. Then,

sij = 
mi/(ni

2 ), when ci = cj

mij/(ni · nj), when ciȱƾȱcj
,

where ni is the number of nodes in the community of 
node i, mi the number of links within community of 
node i and mij is the number of links between com-
munities of nodes i and j. As is the case for previo-
us two indices, we include a modified version of the 
community index as well, returning a very negative 
score when the killer or victim are already dead.

���� �'FBUVSF�FYUSBDUJPO�GPS�NBDIJOF�MFBSOJOH�
BQQSPBDIFT

Besides using the classic index-based link prediction 
techniques, we also make use of a machine learning- 
based approach, in which we construct features from 
network properties and additional metadata, and 
use them to train a classifier. The data used for train-
ing the classifier includes properties of the kills net-

work such as PageRank scores for all characters and 
the basic kills from the original dataset. Computing 
a score like PageRank (Brin & Page, 1998) on the kills 
network would be pointless as the nodes have an in-
-degree of at most one, so the scores would be high 
for those who already died. We can take a different 
network of characters into account for this particu-
lar case. An online repository of sample networks, 
found at https://github.com/melaniewalsh/sample-
-social-network-datasets, contains a sample of the 
Game of Thrones social network, which creates an 
edge between two character nodes if they appear wi-
thin a 15-word distance in the original books. Since 
the shows are vastly influenced by the books (at least 
very strongly up to episode 60 to which our kills data 
is collected) we can use properties from that network 
as well to gather some additional information. This 
network has 107 nodes and 352 edges, and is shown 
in Figure 3.

������ 4UBOEBSE�NBDIJOF�MFBSOJOH�GSBNFXPSL
The framework we use for predicting links using 
machine learning is similar to the framework that is 
described in Section 3.1.1. We split the procedure for 
getting scores for test links into two parts — first we 
obtain the scores for positive examples and then the 
negative examples.

To obtain the scores for positive examples, we 
first choose some episode, whose kills we are curren-
tly trying to predict. These links make up our current 
test set. Links that appear in the episodes after the 
selected one are ignored, as we must not predict the 
past based on future events. The kills that happened 
prior to the selected episode make up our current 
training set. In addition to that, we sample the same 
amount of negative examples in order to make the 
training set balanced. The classifier is then trained on 
the training set and used to predict scores for chosen 
test examples. This is repeated for multiple chosen 
episodes and at the end we obtain scores for P positi-
ve examples, where P contains all the kills that have 
happened in the chosen episodes.
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For negative examples, we take all the kills from 
our dataset and sample the same amount of non-kills 
to form a training set. The test set consists of P rando-
mly sampled non-kills from the entire dataset. These 
test examples are sampled in a way that they do not 
overlap with negative examples in the training set.
For obtaining the scores, we use three different mo-
dels: K-nearest neighbors (KNN), logistic regression 
and support vector machine (SVM) (Hastie, Tibshira-
ni, & Friedman, 2009). The rest of the framework re-
mains the same as the one described in Section 3.1.1.

������ 1BHF3BOL
The first feature we use is the PageRank score (Brin & 
Page, 1998). We can calculate it to find the most im-
portant characters as they will hopefully have the hi-
ghest scores. Being more important could mean two 
things — either you are very important and thus have 
a lot of security by guards and other helpers, so you 
are very unlikely to die, or the exact opposite. The 
opposite would imply that since this series is oriented 
around taking the power from others, you are more 
likely to die if you are very important, which seems 
more plausible since the show thrives on the sudden 
deaths of the more popular characters. A very low 
PageRank score of some character would then also 
mean that they are very unlikely to have their death 
portrayed, since the viewers and readers don’t care or 

have forgotten about the least important people in the 
story. We use two PageRank-based features, the first 
being killer_pagerank and the second victim_pagerank, 
since we are trying to predict killer and victim pairs. 
The top 5 scoring characters after PageRank calcula-
tions are Tyrion (0.055), Jon (0.045), Daenerys (0.041), 
Jaime (0.037) and Sansa (0.036). From our knowledge 
of the show, we can safely claim that these are some of 
the most, if not the most important characters, so we 
can then be sure that these scores make sense in terms 
of importance. We assign a mean of all the PageRank 
scores for each character that is found in the kills da-
taset, but is not present in the social network.

������ #FUXFFOOFTT�DFOUSBMJUZ
Another measure that we extract from the social net-
work as a feature is the betweenness centrality (Free-
man, 1977). This score measures how many shortest 
paths from two different nodes go through a certain 
other node. That means that the higher the score, the 
more control over  a big portion of the network a node  
has (i.e. is one of the nodes that can make the network 
split quickly). That should also yield a measure of im-
portance — if one character wants to reduce the power 
of a part of a network, they can disconnect it from the 
biggest component by eliminating nodes with high 
betweenness centrality. Again, we observe that the 
five top scoring people are also the most important 
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characters in the story: Jon (0.230), Robert (0.209), 
Tyrion (0.198), Daenerys (0.157) and Robb (0.127). For 
every character from the kills dataset that is not in the 
social network, we use a mean of betweenness centra-
lity scores, similarly to the PageRank scores.

������ $PNNVOJUZ�EFUFDUJPO
Simply using the house that a character belongs to 
as a feature could perhaps help. The intuition be-
hind this is that there might be more kills occuring 
between members of different houses than between 
members of the same house. Since our dataset has 
a lot of undefined values for the houses, we can 
find communities in the social network using an al-
gorithm such as the Leiden modularity optimizati-
on (Traag et al., 2019). We can assign a label of the 
community to each character and see if that helps us 
with the prediction by creating some sort of indicator 
between which groups the kills occur. After running 
the community detection algorithm on the social 
network, we can see that we obtain meaningful re-
sults (meaningful to people who watch the show) in 
terms of alliances. The network gets partitioned into 
five big communities. For example, we can see that 
Khal Drogo, Daenerys Targaryen, Aegon Targaryen 
and Jorah Mormont all fall into the same community, 
even though they do not originate from the same ho-
uses, but as we know from watching the show, they 
are allies. Every character from the kills dataset that 
is not included in the social network gets assigned to 
a dummy community.

������ "VUPNBUJD�GFBUVSF�FYUSBDUJPO�GPS�NBDIJOF�MFBSOJOH�
BQQSPBDIFT
In addition to handcrafting features we also try an 
approach using automated feature extraction, speci-
fically node2vec (Grover & Leskovec, 2016) to obtain 
node and link features. We use these in place of pre-
viously handcrafted features.

For a given node, node2vec constructs a feature 
representation (embedding) that aims to preserve the 
network neighbourhood properties in a vector space 
of fixed dimensionality.  Depending on parameters    
p (return parameter) and q (in-out parameter), the al-
gorithm performs different types of biased random 
walks in order to represent the node’s neighbour-
hood. Setting p to a low value encourages a search   
that is local to the given node, while setting q to a 
low value encourages a more explorative search. The 

sampled neighbourhoods are then used to estimate a 
feature representation that maximizes the probabili-
ty of observing these neighbourhoods for the given 
node. We obtain a link embedding by concatenating 
together the embeddings of source and target node. 
If a node has no embedding, a generic embedding 
for an unknown node is assigned to it. We train the 
embeddings on the social network, capturing cha-
racter co- ocurrences. Because we are dealing with 
a very small dataset, we cannot afford to tune the 
hyperparameters reliably. Following the findings of 
authors of the method, we set the parameters to p = 2 
and q = 0.5 since these settings are shown to bias the 
embeddings to capture homophily. We fix the node 
embedding size to 16.

�� 3&46-54
For our experiments we select and remove links that 
are associated with kills that happened in seasons 
four to six. There are 114 of those, to which we add 
114 randomly selected unlinked nodes and compute 
the AUC based on these examples.  We repeat this 
process five times to account for the randomness 
in selection  of negative examples and provide the 
mean AUC and its standard deviation. We support 
the AUC scores with precision and recall scores as 
well, since AUC only measures how well a rando-
mly selected positive example can be distinguished 
from a randomly selected negative example. For the 
classic link prediction techniques, we classify exam-
ples with scores strictly higher than zero as positive 
and the others as negative. For the machine learning 
approach, every example with a score greater than or 
equal to 0.5 is classified as positive and the others as 
negative. We then calculate the precision as

precision = 
#true positives

#true positives + #false positives

and recall as

recall =  
#true positives

#true positives + #false positives .

The obtained results are shown in Table 1.
Results show that the community index achieves 

the best result in terms of AUC, 0.875. The best pre-
cision and recall scores are obtained using the alive 
index, which are 0.822 and 0.930. Other indices using 
the death info achieve similar results, however their 
precision and recall scores are different.
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and the handcrafted features. The features created by 
node2vec yield worse AUC and precision scores and 
higher recall scores than the handcrafted features. 
All the final results for the machine learning approa-
ches are shown in Table 3..FUIPE AUC 1SFDJTJPO 3FDBMM

QSFGFSFOUJBM�
BUUBDINFOU

�����	����
 �����	����
 �����	����


QSFGFSFOUJBM�
BUUBDINFOU�p

�����	����
 �����	����
 �����	����


"EBNJD�"EBS �����	����
 �����	����
 �����	����


"EBNJD�"EBS�p �����	����
 �����	����
 �����	����


DPNNVOJUZ�
JOEFY

�����	����
 �����	����
 �����	����


DPNNVOJUZ�
JOEFY�p

�����	����
 �����	����
 �����	����


BMZWF�JOEFY ���� 	����
 0,822�	����
 0,930�	����
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5IF�UBCMF�TIPXT�UIF�NFBO�"6$�QSFDJTJPO�BOE�SFDBMM�BOE�UIFJS�TUBOEBSE�
EFWJBUJPO�PWFS�GJWF�SVOT��5IF�TZNCPM�NBSLT�UIF�WFSTJPOT�PG�JOEJDFT�XIFSF�
B�DIFDL�JT�GJSTU�QFSGPSNFE�JG�UIF�LJMMFS�PS�UIF�WJDUJN�JT�BMSFBEZ�EFBE�
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WFDUPS�NBDIJOF�	47.
��5IF�UBCMF�TIPXT�UIF�NFBO�"6$�QSFDJTJPO�BOE�
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The Adamic-Adar and community index achieve 
0 precision and recall because no links get classified 
as positive. For the community index, this is due to 
the network components being very disconnected, 
while for the Adamic-Adar this is due to the fact that 
nodes cannot have common neighbors as kills are 
only attributed to one person, meaning two killers 
cannot kill the same victim.

Other indices that don’t use information about 
deaths achieve AUC scores around 0.5. This implies 
that they perform no better than if links were classi-
fied randomly.

The standard machine learning approaches came 
out to be a little bit better than random when using 
the base kills dataset using only the out-degrees of 
characters as a feature, with AUC scores ranging 
from 0.556 to 0.650 as shown in Table 2.

By adding network features (PageRank, between-
ness and community identifier for each character) we 
improve the general performance of all the classifiers 
and obtain a better top score of 0.686 by using SVM 

�� %*4$644*0/
We see that the sparsity of the network and its size 
(less that 400 nodes) make link prediction on such a 
small network very inaccurate in most cases.
Since the original network of kills does not seem to 
have  any community-like structure,  it is very hard     
to predict kills based on community-based link pre-
diction methods, such as the community index. The 
modularity optimization algorithm finds more than 
100 communities with no links between them, which 
means that the modeling of densities between com-
munities does not give us any information, since the 
probability of a link occurring between communities 
is zero. That is a solid foundation for the claim that 
the authors have done a good job by not creating a 
very obvious structure of the kills, where someone 
would kill a lot of people from e.g. their opposing 
house, making it easy to predict that there will be 
another similar kill occurring in the following episo-
des which the viewers have not yet seen.
We cannot achieve good results by constructing in-
dices that try to predict kills using out-degrees only, 
since the majority of nodes have a very low out-de-
gree (as can be observed on Figure 2).
When we add the death information, we observe that 
the modified Adamic-Adar index performs as good 
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as the alive index, since it represents the same idea. 
We know that two nodes cannot have a common 
successor, since a character can only die once. They 
can only have one common predecessor, however 
that implies that both the killer and victim are alre-
ady dead. By taking the death information into con-
sideration, we automatically decide that when one 
character is already dead, there will be no link. That 
makes the common neighborhood factor in the index 
irrelevant, making it decide the outcome based only 
on whether a character is alive or not.
The indices that use the death information achieve 
the best results because of the way the network is 
constructed. Nodes either have an in-degree of zero 
or one (depending on whether they were already 
killed or not). When sampling positive examples in 
our framework, we remove the edge for that positive 
example, decreasing the in-degree of the target node 
from one to zero. When sampling negative examples, 
we do not remove any edges. However, because our 
original network is constructed from deaths in the se-
ries, most of the characters in our network have died 
at some point. Therefore, the target node of a nega-
tive example is quite likely to have an in-degree of 
one. These death information indices make use of the 
fact that when we sample a positive example, we are 
going to decrease the in-degree of the target to zero, 
and when we sample a negative example, the in-de-
gree of the target is likely to still be one (i.e. that the 
target was killed by somebody else at some point). 
We try to account for this by adding some additional 
isolated nodes (corresponding to characters that did 
not kill anyone and did not die), but the index still 
performs best on the expanded network. So although 
the baseline index and the other indices which use 
death information achieve good results, they do not 
do so by using any structural properties of the net-
work but rather just by abusing the way our network 
is constructed. The key takeaway here is that achie-
ving an AUC score around
0.85 is not that hard. The hardest part is achieving a 
noticeable increase in performance over the baseline
classifier. The results from the standard machine le-
arning approaches are bad, since we only use the out 
degree as the basic feature from the original dataset 
to predict kills. When we augment it with different 
centrality measures and community identifiers, the 
performance is improved, mostly because of the 
fact that we do not only have one feature anymore 

and because these features are not equally weighted 
anymore. However, there should be some added va-
lue to the features due to what the features represent, 
which is explained for each index in Section 3.
Among the approaches using node2vec features, the 
approach using KNN achieves the best results. Vi-
sualization of the link embeddings reveals why the 
approach performs well. Figure 4 shows embedded 
positive and negative links, projected onto a two-
-dimensional plane using t-distributed Stochastic 
Neighbor Embedding (t-SNE) (Maaten & Hinton, 
2008). We can observe that the links are often surro-
unded by links of the same class in their neighbour-
hood, allowing KNN to correctly predict many links. 
The visualization also reveals one of the reasons the 
approaches using node2vec do not perform better: 
the links where at least one of the nodes does not 
have a “proper” embedding are embedded closely. 
The circle-shaped cluster in the visualization repre-
sents the links where at least one of the nodes were 
assigned a generic embedding for unknown nodes 
(due to some character being present in the social ne-
twork but not in the kills network). The cluster conta-
ins very mixed classes, rendering KNN less useful. In 
additional experiments using node2vec features, we 
found that using a link embedding technique whe-
re node embeddings are averaged instead of conca-
tenated together (i.e. ignoring direction of the link) 
results in a significant performance drop. The mo-
dified embeddings in combination with KNN result 
in a mean AUC reduced by 0.068, a mean precision 
reduced by 0.028 and mean recall reduced by 0.127. 
This aligns well with intuition since, for example, a 
notorious killer is more likely to kill an innocent vic-
tim than vice versa.

Jaka Stavanja, Matej Klemen, Lovro Šubelj: /BQPWFEPWBOKF�VNPSPW�W�TFSJKJ�*HSB�QSFTUPMPW�[�VQPSBCP�BOBMJ[F�PNSFßJK



U P O R A B N A  I N F O R M A T I K A64 2020 - πtevilka 2 - letnik XXVIII

6 CONCLUSION
Throughout our work we have acknowledged that 
the Game of Thrones kills do not have a particular-
ly detectable pattern, since all the kills appear bet-
ween two nodes that have not yet killed anyone be-
fore in most cases. But since our network is small, 
our test samples are even smaller and that can give 
deceivingly high AUC scores for indices that would 
potentially fail on bigger networks and in different 
scenarios. By using classic machine learning and link 
prediction techniques, we have found that, on this 
dataset, no index or feature works better than a sim-
ple baseline index (the alive index), which does not 
model some useful property, but rather abuses the 
way the network is formed. Most of the techniques 
used to predict kills in Game of Thrones gave us a 
fairly good AUC score, but the predictions that our 
approaches get right do not have a high “shock fac-
tor“. For example, our classifiers might be able to 
predict that Jon Snow will kill a wight, but likely fails 
on less obvious kills. For future work, our approa-
ches could be tested on different TV shows, books 
or even movies to see how predictable the kills are. 
Our death information indices could potentially fail 
on bigger networks with a bit more diverse structu-
re (e.g. having more bigger connected components) 

'JHVSF����/PEF�WFD�FNCFEEJOHT�GPS�QPTJUJWF�BOE�OFHBUJWF�MJOLT�JO�UIF�LJMMT�OFUXPSL�QSPKFDUFE�POUP�UXP�EJNFOTJPOT�VTJOH�U�4/&�

and that would give other more basic indices higher 
accuracy. We could also construct edges using some 
other information besides kills, e.g. who had a rela-
tionship with whom in some show or who scammed 
whom in a criminal series.

Source code

The source code to reproduce results presented in 
this paper is available at
https://github.com/matejklemen/got-link-prediction.
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