ANALIZA DELOVANJA KOPICE IN NAPADOV DVOJNE
SPROSTITVE

Domen Breznik!, Mark Novak!, Mateviz Pesek!
!Univerza v Ljubljani, Fakulteta za ra¢unalnistvo in informatiko, Ve¢na pot 113, 1000 Ljubljana
db007090@student .uni-1j.si, mn44954Q@student.uni-1j.si, matevz.pesek@fri.uni-1j.si

Izviecek

Clanek obravnava varnostne ranljivosti, ki nastanejo zaradi nepravilnega upravljanja s pomnilnikom v
programih, napisanih v jezikih C/C++. PosveCamo se napadu dvojne sprostitve (angl. double free), ki
omogoca napadalcu prevzem nadzora nad pomnilniSkim prostorom in potencialno krajo administratorskih
privilegijev. Predstavimo pregled sorodnih ranljivosti, kot so prekoracitev kopice (angl. heap overflow) in
uporaba po sprostitvi (angl. use-after-free) ter obravnavamo obrambo pred takSnimi napadi. Na osnovi
prilagojene aplikacije demonstriramo prakti¢en napad, prikazemo proces izkori§€anja ranljivosti in analiziramo
posledice, ki segajo od nestabilnosti sistema do resnih varnostnih grozenj. Clanek obravnava obstojege
reSitve, kot so uporaba jezikov z samodejnim upravljanjem s pomnilnikom, alternativnih implementacij funkcije
malloc, stati¢ne analize kode ter pristopov defenzivnega programiranja.

Klju¢ne besede: dvojna sprostitev, napad, kopica, upravljanje pomnilnika, kosi, arene.

ANALYSIS OF HEAP OPERATION AND DOUBLE FREE ATTACKS

Povzetek

The article examines security vulnerabilities arising from improper memory management in programs written
in C/C++. We focus on the double free attack, which enables an attacker to take control of memory
space and potentially obtain administrative privileges. A review of related vulnerabilities, such as heap
overflow and use-after-free, is presented, along with defenses against such attacks. Based on a customized
application, we demonstrate a practical attack, show the process of exploiting the vulnerability, and analyze
the consequences, which range from system instability to severe security compromises. The article discusses
existing solutions, such as the use of memory-safe programming languages, alternative implementations of
the malloc function, static code analysis, and defensive programming approaches.

Keywords: double free, attack, heap, memory management, bins, arenas.

1 SEZNAM UPORABLJENIH KRATIC

H Kratica Pomen H
CVE Common Vulnerabilities and Exposures
UAF Use-After-Free
glibc GNU C library

tcache Thread cache

ASLR Address Space Layout Randomization
LIFO Last In First Out

WebGL Web Graphics Library

2 UVOD

Nevarnosti, izvirajoe iz napak pri upravljanju s pomnilnikom, ostajajo klju¢ni izziv v programski opremi,
razviti v programskih jezikih C in C++. Ta jezika omogocata neposreden dostop do pomnilnika in izjemno

ucinkovitost, hkrati pa nalagata odgovornost razvijalcem, da ro€no skrbijo za dodeljevanje in sproS€anje
pomnilniskih blokov.

Med najresnejSimi so ranljivosti, ki omogocajo okvaro pomnilnika in izvrSitev poljubne kode; posebej izstopa
dvojna sprostitev (double free), ko isti pomnilniski blok neustrezno sprostimo ve¢ kot enkrat. Empiri¢ni
podatki iz zbirke MegaVul (2006—2023), ki vsebuje 17,380 ranljivosti, kazejo, da je 59,27% vseh napak
povezanih z upravljanjem pomnilnika, kar potrjuje trajno aktualnost problema in potrebo po sistemati¢nih
pristopih k njegovi obravnavi [21].

Napake pri upravljanju s pomnilnikom imajo dolgo zgodovino v praksi in raziskavah. Rezultati preteklih del
so kazali, da lahko prepis kazalcev ali napa¢no rokovanje z dodeljenimi bloki povzroci napake [1]. Kasnejse
Studije potrjujejo, da tovrstne ranljivosti niso zgolj teoreti¢ne, saj so orodja za odkrivanje prekoracitev kopice
razkrila ve¢ deset doslej neznanih napak [4]. TakSne napake pogosto vodijo do nedefiniranega vedenja
programa, ki se lahko izrazi v obliki sesutja, izgube podatkov ali celo vnosu zlonamerne kode v izvajalni tok.

Kljub razlicnim poskusom preprecevanja tovrstnih ranljivosti, primeri iz javno dostopne zbirke CVE [15]
potrjujejo, da gre za $e vedno aktualno in pogosto izrabljeno ranljivost. Napadi izkori§¢ajo tako stare
kot tudi sodobne programske sisteme, kar kaze, da so obstoje€i mehanizmi zas¢ite pogosto nezadostni
ali neucinkoviti, $e posebej ob kompleksnih scenarijin uporabe. Poleg tega so izkoriS§€anja teh napak
zanimiva za napadalce, saj pogosto omogocajo eskalacijo privilegijev in obid varnostnih mehanizmov na
ravni operacijskega sistema. V pri¢ujo¢em ¢lanku v testnem okolju simuliramo in prikazemo izkoris¢ene
ranljivosti dvojnega spro$canja in uporabe po sprostitvi pomnilnika ter demonstriramo metode za zascCito
pred napadi tega tipa.

3 PREGLED PODROCJA

3.1 SORODNA DELA

Napadi, kot so preliv kopice (angl. heap overflow), uporaba po sprostitvi (angl. use-after-free) in dvojna
sprostitev (angl. double free), so bili obsezno preuceni zaradi njihovega potenciala za okvara pomnilnika in
izvajanje poljubne kode.

Temeljna raziskava na tem podrocju je delo Crispina idr., kjer so razvili metodologijo, imenovano PointGuard,
za detekcijo zlonamernih programov, s fokusom na virusih. Njihova implementacija je bila efektivna za
obrambo pred prelivom kopice [1]. Pogosto citiran znanstveni ¢lanek je tudi ¢lanek avtorja Kouwe in drugih.
OsredotocCajo se na detekcijo dostopov po sprostitvi s svojo reSitvijo DangSan. ReSitev je skalabilna ter
podpira ve¢ nitne aplikacije [2].

Preliv kopice je ranljivost, kjer program zapiSe ve¢ podatkov, kot jih je bilo predvidenih v prostoru na kopici.
To lahko povzroci okvaro pomnilnika in ostale varnostne ranljivosti. Heelan idr. z implementacijo Gollum
avtomatizirajo generacijo ranljivosti v tolmacu. V delu predstavijo mo¢ implementacije z napadi v PHP
in Python tolmacih [3]. V drugi smeri so raziskovalci iskali reSitve za detekcijo napadov med delovanjem
programa. PokaZejo efektivnost delovanja z 17 resniCnimi primeri v realnem svetu ter z najdbo 47 prej ne
znanih ranljivosti [4]. Tematika je podrobneje obravnava v ¢lanku Gopala idr. [5] in delu He idr. [6]. Taki
napadi so prisotni 8e danes, na primer CVE-2025-27091 [15] in CVE-2025-2531 [15].

Dvojne sprostitve se pojavijo, kadar je isti pomnilniski blok spro$¢en veé kot enkrat, pogosto zaradi seman-
ticnih napak programa. Take napake lahko povzrocijo zruSitev programa, okvaro pomnilnika ali izvajanje
poljubne kode. Maryam idr. predstavijo fuzzing metodo za detekcijo ranljivosti kopice v tej smeri, s ¢imer
nadgradijo podobne programe iz prej$njih raziskav. ReSitev doseZejo z kalkulacijo simboli¢nih poti in drugimi
omejitvami za izvrSljivo datoteko [7]. Na detekcijo tovrstnih napadov so se poglobili tudi Baradaran idr. Osre-
dotoCajo se na detekcijo z enotno simbolicno metodo (angl. unit-based symbolic exection method). Program
razdelijo na enote, ki lahko vsebujejo ranljivosti in so stati¢no identificirane, glede na njihove specifikacije
[8]. Tematika je podrobneje obravnava v Clanku Cabballera idr. [9] in ¢lanku Novarka idr. [10]. Primeri
iz resni¢nega sveta, kot sta CVE-2025-2027 [15] in CVE-2025-32911 [15], kazZejo, da so take ranljivosti
prisotne tudi danes.

Dostopi po sprostitvi so tesno povezani z dvojnim sproS¢anjem in se pojavijo, ko program dostopa do
pomnilnika po njegovi sprostitvi. Napadalec lahko nato prevzame nadzor nad tem pomnilniSkim prostorom.
UAF je vztrajno prisoten problem, zlasti v kompleksnih aplikacijah, kot so spletni brskalniki. Kailong idr. so se
osredotocili na detekcijo takih napadov in so naredili prototip imenovan UAFDetector. Detekcijo dosezejo s
sledenjem kazalcev ter function summaries pristopom [11]. Raziskovalci Quiang idr. so za obrambo pred

takimi napadi raziskali reSitev Mpchecker, ki dinami¢no brani sistem z vmesnimi kazalci, ki jih imenujejo
Multi-Level Pointers. ReSitev omogoc¢a dostop do objektov samo z vmesnimi kazalci, ki jih aviomatsko sprosti
ob sprostitvi objektov [12]. Tematika je podrobneje obravnava v ¢lanku Shena idr. [13] in delu Feista idr.
[14]. Kot pri ostalih napadih, so tudi ti prisotni Se danes, na primer CVE-2025-27730 [15]. Za SirSi pregled
rac¢unalniskih napadov bralcu priporo¢amo tudi SirSe preglede, npr. [16,[17]

Dirty COW (CVE-2016-5195) [15] je ranljivost, ki poveca privilegije v Linux jedru. Izkori§¢a race condition,
ranljivost, ki se zgodi, ko vec niti dostopa do istega podatka pri obravnavi sistemskega klica mmap. S tem
lahko napadalec piSe v bralne (angl. read-only) pomnilnike prostore, kar vodi do povi$anja privilegijev.
Napad deluje v Linux jedrih od verzije 2.x do 4.8.2.

3.2 DEFINICIJE
3.2.1 Kopica

Kopica (angl. heap) je prilagodljivo obmocje pomnilnika za shranjevanje vecjih podatkovnih struktur in
podatkov z dinami¢no Zzivljenjsko dobo. Od tradicionalnega upravljanja s pomnilnikom se razlikuje po tem,
da z njo upravljamo eksplicitno sami, v jezikih kot sta Java in C# ponavadi preko operatorja new, v bol]
nizkonivojskih jezikih kot je C, pa preko funkcije malloc(). Pozorni moramo biti na dejstvo da dodeljeni
objekt/blok pomnilnika ostane v uporabi, dokler ga eksplicitno ne sprostimo. V nizkonivojskih programskih
jezikih kot je C, je za to zadolzen programer z uporabo funkcije free(). Dodatna pozornost mora biti
posvecena jezikom, kjer pomnilnik spro§¢amo sami, saj se hitro zgodi, da pomotoma naredimo preliv
(ang. memory leak) ali kak§no drugo napako, ki podvrze na$ program ranljivostmi, katero lahko napadalci
izkoristijo.

3.2.2 Funkcija malloc()

Funkcijamalloc() se uporablja, za dodeljevanje specificnega Stevila bajtov pomnilnika. Funkcija pri¢akuje
en argument, ki predstavlja Stevilo bajtov. Pozorni moramo biti na to, da malloc () samo rezervira prostor in
ga ne inicializira, zato nimamo zagotovila, da bo dodeljeni blok prazen (angl. garbage values).

Funkcija malloc () vrne kazalec, ki kaze na dodeljeni blok pomnilnika, sledeci kazalec moramo, ¢e ga zelimo
uporabiti, pretvoriti v ustrezni tip npr. int, char, itd. V primeru, da nimamo dovolj prostora na pomnilniku, bo
funkcija malloc () vrnila prazen kazalec, zato je v praksi dobro preverijati, Ce je kazalec prazen (angl. NULL).

4 bytes
— [

|
int* ptr = (int*) malloc (5* sizeof (int));

ptr= l—» Alarge 20 bytes memory block is
dynamically allocated to ptr

«——20 bytes of memory —

Slika 1: Delovanje funkcije malloc [22].

3.2.3 Funkcija free()

Funkcija free () se uporablja za sprostitev dodeljenih blokov. Njen edini argument je kazalec, ki kaze na
lokacijo bloka v pomnilniku, katerega Zelimo sprostiti. Pri tem obdrzi kazalec in samo sprosti blok na katerega
je kazalec kazal, tako kazalec zdaj kaZze na spro$ceni blok. Pozorni moramo biti na dejstvo da funkcija free
ne izbriSe kazalca niti podatkov, ki so bili shranjeni na blok, ampak samo sporoci sistemu, da je zdaj ta blok
prost (angl free) za druge dodelitve.

4 bytes

int* ptr = (int*) calloc (5, sizeof (int));

ptr= | ‘] | ‘ |—» 5 blocks of 4 bytes each is
«4b> dynamically allocated to ptr
+— 20 bytes of memory —
operation on ptr
l free(ptr)

The memory of ptris released

Slika 2: Delovanje funkcije free [22].

3.2.4 Arene

V veénitnih aplikacijah, mora kopi¢ni upravljalec (angl. heap manager) paziti, da ve¢ aplikacij ne dostopa
do kopice hkrati. ReSitev so arene, ki delujejo kot razli¢ne kopice z svojimi strukturami. Arene so loCeni
sklopi pomnilniSkega prostora z lastnimi podatkovnimi strukturami za upravljanje dodeljevanje in spro$¢anje
pomnilnika. Pri eno nitnih aplikacijah se uporablja samo glavna arena, ob dodajanju niti pa se ustvarijo
sekundarne arene.

3.2.5 Alokacija blokov

Podatke, ki dodelimo in sprostimo na kopico preko funkcijmalloc () in free() se shranijo v enega izmed
koSev, kjer se rezervira prostor za zaglavje, na$ podatek in velikost prejSnjega bloka. Zaglavje sestavljajo:

* trenutna velikost v Bajtih

¢ 3 zastavice A, Min P.

— A (Allocated arena), je nastavljen na 0, Ce je blok v glavni areni in nastavljen na 1 sicer

— M (Mmapd chunk), je nastavljen na 1, e je bil blok alociran z klicem mmap in nastavljen na 0
sicer

— P (Previous chunk in use) je nastavljen na 1, Ce je prejSniji blok §e v uporabi, torej ni bil spro§cen
z funkcijo free in nastavljen na 0 sicer

« velikost prejSnjega bloka v Bajtih

ALLOCATED CHUNKS

A (0x04) - Alloeated arena,

PREV_SIZE If bit is 1, chunk comes from the mmap'd memory.
(NOT USED WHILE ALLOCATED If bit is 0, chunk comes from main arena and the
main heap.
CHUNK SIZE | A | M| P M (0x02) - Mmap'd chunk.
Chunk was allocated with mmap eall and is not

part of a heap.

Chunk 1 P (0x01) - Previous chunk in use,

USER DATA If bit is set, the previous chunk is still in wse and
should not be considered a candidate for coalescing.
PREV_SIZE
(NOT USED WHILE ALLOCATED,

CHUNK SIZE | A | M| F

USER DATA Chunk 2

PREV_SIZE
(NOT USED WHILE ALLOCATED

Slika 3: Vizualna predstavitev bloka [23].

Ko dodelimo podatke s funkcijo malloc() dobimo kazalec na prostor za te podatke, torej user data. Ce ho-
¢emo delati z bloki direktno, torej hoCemo, da kazalec kaze na zaglavje, lahko uporabimo makro mem2chunk
ali za obratno makro chunkZ2mem.

#define mem2chunk(mem) |\

((mchunkptr)tag_at (((char*)(mem) - CHUNK_HDR_SZ)))
#define chunk2mem(p) |\

((void*) ((char+*)(p) + CHUNK_HDR_SZ))

3.2.6 Kosi

Kosi omogocajo uc¢inkovito dodeljevanje in spro$¢anje pomnilnika. Bloki so vsebovani v kosih. Vsaka arena
vsebuje 5 tipov koSev:

+ 64 predpomnilniskih kosev (angl. tcache bins)
Predpomnilniski ko$ je en povezan seznam najve¢ 7 majhnih pomnilniskih blokov, ki bloke ne
zdruZuje po sprostitvi.

+ 10 hitrih koSev (angl. fast bins)
Hitri ko$ je namenjen pospeSevanju ¢asa alokacije za majhne pomnilniSke bloke, tako da hrani
predcasno sproscene bloke. Uporablja LIFO pristop, implementiran s povezanimi seznami, kar
pomeni, da bo prostor zadnjega spro$éenega bloka uporabljen pri novi alokaciji.

* 1 neurejen ko$ (angl. unsorted bin)
Neurejen kos se uporablja kot medpomnilnik za kopi€nega upravljalca, da pohitri dodeljevanje. Ko
program sprosti pomnilniski blok, ga kopi¢ni upravljalec poskusi zdruziti s potencialno spros¢enimi
sosednjimi bloki, da naredi vecji spros¢eni pomnilniski blok. Ta blok potem vstavi v neurejen kos.
Ko program prosi za nov pomnilniski blok, upravljalec najprej pogleda v neurejen kos in kasneje v

majhne in velike koe. Ce prostora ne najde vse bloke iz neurejenega ko$a vstavi v primeren majhen
ali velik kos.

+ 62 majhnih kosev (angl. small bins)
Majhni koSi so hitrejSi od velikih, a po¢asnejsi od hitrih. Vsak ko$ ima bloke enake dolzine: 16 B, 24
B, 32 B, ... Z maksimalno velikostjo 1024 B pri 64 bitnih sistemih, kar pomaga pri iskanju prostega
prostora.

+ 63 velikih kosev (angl. large bins)
Veliki ko8i, za razliko od majhnih, vsebujejo bloke, ki imajo skupno velikost v nekem razponu.
Namesto enake velikosti, najvecji ko vsebuje bloke z velikostjo veéjo od 1 MB.

4 METODOLOGIJA

4.1 Raziskovalno okolje

Raziskovalno okolje je sestavljeno iz enostavnega programa napisanega v programskem jeziku C, katerega
namen je pisanje zapiskov, ki se shranjujejo na kopico. Program ima nhamenoma vgrajeno ranljivost kopice, s
pomocjo katere lahko napadalec izvede napad dvojne sprostitve. To omogoca analizo in testiranje napada
dvojne sprostitve v kontroliranem in znanem okolju.

V programu lo¢imo med dvema uporabnikoma: navadnim in administratorskim. Razlikujeta se le v tem, da
administrator lahko spreminja administratorsko geslo, medtem ko ga navadni uporabnik ne more.

Uporabniki se po programu sprehajajo preko terminala, tako da napiSejo pripadajoco Stevilko pred podanimi
moznostmi, katere lahko vidimo v sliki spodaj.

Welcome to the journal app!
[1] Make entry
[2] Delete entry

[d4] Print entries
[5] Exit

Slika 4: Uporabniski vmesnik aplikacije.

4.2 Struktura programa

Uporabniski vmesnik se vrti v neskonéni zanki, katera se konc¢a, ko uporabnik vnese v terminal Stevilko pet,
ki prekine delovanje programa. Uporabnik ima na voljo tudi moZnost izdelovanja zapiskov, katere lahko tudi
brise.

typedef struct Entry Entry;

typedef struct Entry {
char* entry_content;
Entry* next_entry;
/o

} Entry;

Entry* init_entry(char* entry_content,
time_t time) {
/).
}
void entry_delete(Entry* parent, Entry* entry,
int entry_number, int current_number) {

/.
}

void entry_add(Entry* parent, char* entry_content,
time_t time) {

/o

Listing 1: Struktura Entry

Zapiski se shranjujejo v objekt, ki je poimenovan Entry (Izsek kode [f). Znotraj strukture najdemo 2 kazalca,
eden kaze na vsebino zapiska, drugi pa na naslednji zapisek.

Kazalec je spremenljivka, ki kot vrednost shrani pomnilniSki naslov dodeljene spremenljivke, v nasem primeru
bo kazal na uporabnisSki vnos, ki ga shranimo na kopico oziroma vsebino zapiska.

Funkcija Entry* init_entry(char* entry_content, time_t time) poskrbiza pravilno dodelitev prostora
in inicializacijo spremenljivk ustvarjenega zapiska (Izsek kode[f).

Rekurzivni funkciji entry_delete(Entry* entry, int entry_number, int current_number) in
entry_add(Entry* parent, char* entry_content, time_t time) se ukvarja z brisanjem zapi-
skov, oziroma sprostitvijo dodeljenega prostora, ko uporabnik izbriSe specificni zapisek (lzsek kode

).

Uporabnik ima tudi moznost prijave kot administrator. Analizirajmo Se kodo, ki preveri, Ce je uporabnik vpisal
pravilno geslo (Izsek kode [2).

void handle_action(AppState* app_state) {
switch (app_state->last_action) {

/7
case 3:
if (app_state->is_admin == 0){
printf ("Hey admin, \
what is your password?\n");
}
// logout admin
else {
printf (GREEN "successfully \
logged out as admin :) \n"
COLOR_RESET) ;
/7
}
break;
/.

void admin_login(AppState* app_state) {

/7
if (strcmp(pass, app_state->user_input) == 0){
printf (GREEN "successfully \
logged in as admin :) \n"
COLOR_RESET) ;
app_state->is_admin = 1;
}
else {
printf ("wrong password, \
please try again \n");
app_state->is_admin = O;
}
handle_action(app_state);

Listing 2: funkciji za prijavo kot administrator

Funkcija handle_action(AppState* app_state) poskrbi za uporabnidki vnos, katerega pridobimo preko
terminala kot tabelo znakov tipa char (angl. array), na katero kaze kazalec user_input (Izsek kode [2).

Prijavo kot administrator lo¢imo v dveh primerih. Prva je ko uporabnik izbere tretjo moznost in je ze prijavljen
kot administrator. V tem primeru ga odjavimo iz sistema nazaj v navadnega uporabnika. Drugi primer je
prijava, kot administrator. Takrat se poklice funkcija admin_login(AppState* app_state), ki od njega
zahteva administratorsko geslo (Izsek kode [2).

Najprej se bo uporabniku izpisalo ustrezno besedilo za vnos gesla:
Hey admin, whats your password?

Program potem ¢aka na vnos uporabnika in v primeru, da je vpisano geslo napacno izpiSe sporocilo:

Wrong password, please try again!

Ce je geslo pravilno, bo program uporabnika ustrezno prijavil v sistem kot administratorja.

Zaradi lazje predstave gesla namenoma ne Sifriramo. Tukaj se opazi prva ranljivost nasega programa. V
realnem svetu, bi geslo, preden bi ga shranili v datoteko, ustrezno Sifrirali.

4.3 Demonstracija napada

Preko programa opisanega v [4.1]bomo prikazali napad dvojne sprostitve. Napadalec lahko program napade
z uporabo dvojne sprostitve. Najprej ustvari 2 zapiska, potem prvega sprosti, nato sprosti Se drugega in nato
ponovno prvega. Medtem mora sprostiti Se en zapisek, da se izogne napaki zaporedne dvojne sprostitve, ki
bi program izkljucila.

Welcome to the journal app!
[1] Make entry
[2] Delete entry

[4] Print entries

[5] Exit

1

Entry:

aaa

ENTRIES:

[1][freed: NOJ[Fri Apr 25 16:14:28 2025] aaa
[1] Make entry

[2] Delete entry

[4] Print entries

[5] Exit

1

Entry:

bbb

ENTRIES:

[1][freed: NOJ[Fri Apr 25 16:14:28 2025] aaa
[2][freed: NOJ[Fri Apr 25 16:14:29 2025] bbb

Slika 5: ZaCetno ustvarjanje dveh zapiskov.

[1] Make entry
[2] Delete entry

[4] Print entries
[6] Exit

ENTRIES:
[1][freed: NOJ[Fri Apr 25 16:14:28 2025] aaa
[2][freed: NOJ[Fri Apr 25 16:14:29 2025] bbb

ENTRIES:
[1][freed: YES]
[2][freed: NOJ[Fri Apr 25 16:14:29 2025] bbb

Slika 6: Sproscanje prvega zapiska.

[1] Make entry
[2] Delete entry

[4] Print entries
[5] Exit

ENTRIES:
[1][freed: YES]
[2][freed: NOJ[Fri Apr 25 16:14:29 2025] bbb

ENTRIES:
[1][freed: YES]
[2][freed: YES]

Slika 7: Sproscanje drugega zapiska.

10

[1] Make entry
[2] Delete entry

[4] Print entries
[5] Exit

ENTRIES:
[1][freed: YES]
[2][freed: YES]

ENTRIES:
[1][freed: YES]
[2][freed: YES]

Slika 8: Ponovno spros¢anje prvega zapiska.

POMNILNIK

aaa bbb

1 2 3 b 5 6
HITRI KOSI

ONONOMO
O,

Slika 9: Stanje pomnilnika in hitrih koSev po dvojni sprostitvi.

11

[1] Make entry
[2] Delete entry

[4] Print entries
[5] Exit

1

Entry:

ccc

ENTRIES:
[1][freed: YES]
[2][freed: YES]
[3][freed: NOJ[Fri Apr 25 16:14:35 2025] ccc
[1] Make entry
[2] Delete entry

[4] Print entries

[5] Exit

1

Entry:

ddd

ENTRIES:

[1][freed: YES]

[2][freed: YES]

[3][freed: NOJ[Fri Apr 25 16:14:35 2025] ccc
[4][freed: NOJ[Fri Apr 25 16:14:36 2025] ddd

Slika 10: Ustvarjanje $e dveh zapiskov.

POMNILNIK

ccc ddd

1 2 3 [5 6
HITRI KOSI

O ©
O

Slika 11: Stanje pomnilnika in hitrih koSev po ustvaritvi Se dveh zapiskov.

12

[1] Make entry
[2] Delete entry

[4] Print entries

[5] Exit

3

Hey adming ;), whats your password?
?2??

wrong passowrd, please try again
[1] Make entry

[2] Delete entry

[4] Print entries
[5] Exit

ENTRIES:

[1][freed: YES]

[2][freed: YES]

[3]1[freed: NOJ[Fri Apr 25 16:14:35 2025] password
[4][freed: NOJ[Fri Apr 25 16:14:36 2025] ddd

[1] Make entry

[2] Delete entry

[4] Print entries

[5]1 Exit

5

EXITING with exit status 0

Slika 12: Neuspes$na prijava in branje gesla.

POMNILNIK

password ddd
1 2 3 L 5 6
HITRI KOSI

O
O,

Slika 13: Stanje pomnilnika in hitrih koSev po napadu.

5 ANALIZA NAPADA

Po ponovnem sprosc¢anju (Slika [8) vidimo, da sta na mestu 1 in 2 v pomnilniku dodeljeni vrednosti nasih
nizov "aaa"in "bbb". Ob sprostitvi pomnilniSke lokacije se dodeljeni nizi uvrstijo v isti ko$, ker so podobne
velikosti. Napadalec mora paziti na velikost njegovih zapiskov, saj se morajo ob sprostitvi zapiski uvrstiti v isti
ko$ iz katerega kasneje dobi prostor geslo (Slika[T0).

Ustvarimo $e 2 zapiska (Slika [10). Ker ustvarjamo zapiske podobne velikosti, bomo dobili prostor od
istega kos$a v katerega sta se sprostili pomnilnigki lokaciji 1 in 2 (Slika[TT). V hitrem ko$u je ostala $e ena

13

pomnilnidka lokacija 1. Napadalec lahko to izkoristi tako, da se poskusi prijaviti kot administrator. V ozadju
se poklice funkcija admin_login (Izsek kode [3).

void admin_login(AppState* app_state) {
char* pass = malloc(PASS_SIZE);
FILEx file = fopen("pass.txt", "r");
/).
int size =
fread(pass, sizeof(char), PASS_SIZE, file);
pass[size - 1] = '\0';

/).

Listing 3: funkcija za prijavo kot administrator

Funkcija admin_login() prebere geslo iz datoteke pass.txt in zanj rezervira ustrezno Stevilo bajtov. Prebrano
geslo se shrani na kopico, tukaj moramo biti pozorni, da dodelimo en znak ve¢ kot je dolgo geslo, saj se v
programskem jeziku kot je C tabele znakov kon&ajo z "null terminatorjem". Ce za primer vzamemo besedo
password, kljub temu da je beseda dolga 8 znakov, bi morali zanjo rezervirati 9 znakov, dodatni znak za "null
terminator"(lzsek kode [3).

char* pass

Slika 14: Proces shranjevanja tabele znakov v programskem jeziku C.

Funkcija dodeli prostor za geslo. Ce je PASS_SIZE podobne velikosti, bo za dodelitev geslo dobilo prostor
iz koSa v katerem je pomnilniSka lokacija 1. Posledi¢no bo funkcija v ta pomnilniski prostor, nad katerim
imamo nadzor, zapisala geslo. Vse kar mora napadalec narediti je, da se prijavi kot administrator in po
neuspehu prebrati njegove zapiske. V primeru, da je PASS_SIZE primerne velikosti, bo funkcija admin_login
v ta prostor zapisala geslo, ki jo bo napadalec lahko prebral in se prijavil v aplikacijo kot administrator.

Napadalec to zlorabi in prebere geslo ter se prijavi kot administrator (Slika[12).

6 DISKUSIJA

Demonstracija napada dvojne sprostitve je razkrila Stevilne posledice, ki jih napad ima kot so:

» Kraja administratorskih privilegijev: Napadalec lahko prebere administratorjevo geslo in se prijavi
kot administrator. Po prijavi lahko napadalec spremeni administratorjevo geslo in mu s tem prepreci
dostop.

* Nestabilnost sistema: Zaradi nepravilnega ravnanja s pomnilnikom (dvojna sprostitev) lahko pride
do nepredvidenih vedenj aplikacije, vklju¢no z zrusitvami, nedeterministinim vedenjem in odkritjem
dodatnih ranljivosti.

14

- Sirse posledice takih napadov: Tak$ni napadi ne vplivajo samo na delovanje aplikacije, ampak
tudi na zaupanije uporabnikov, finan¢ne izgube ter dolgorocni ugled.

Ugotovili smo, da so napadi na kopico zahtevni, saj napadalec potrebuje temeljito znanje in razumevanje
njene strukture. V naSem primeru je napadalec moral pazljivo dodeljevati prostor na pomnilniku preko
ustvarjanja zapiskov, da so se shranili v enak koS, da je potem lahko pravilno prepisal shranjeno geslo.

Ni nujno, da je ranljivost prisotna znotraj naSega programa, ampak lahko izvira iz zunanjih knjiznic ali drugih
zunanijih virov, ki jih na$ program potrebuje za delovanje. V praksi so te ranljivosti bolj pogoste, kot npr.
ranljivost knjiznice WebGL za Chromium brskalnike [15].

Ostane nam $e vprasanje kako se pred napadi zas¢iti in kako jih resiti? Vrnimo se v funkcijo entry_delete,
ki skrbi za brisanje zapiskov (Izsek kode [4).

void entry_delete(Entry* parent, Entry* entry,
int entry_number,
int current_number) {

if (entry_number == current_number) {
/7.
entry->is_freed = 1;
free(entry->entry_content) ;

}

else {

/)

Listing 4: funkcija za izbris zapiska

V funkciji opazimo uporabo spremenljivke is_freed, katero na$ program uporablja za preverjanje, ali je bila
vsebina zapiska sproSc¢ena ali ne. Gre za enostavno spremenljivko tipa int, katera ima lahko samo vrednosti
0, ki izraza vrednost false ali 1, ki izraza vrednost true (Izsek kode .

Resitev je precej enostavna. Spremenljivko nastavimo na vrednost 1 Sele potem, ko dejansko sprostimo
vsebino s klicem funkcije free. S tem smo Ze na polovici reSitve. Kar nam Se ostane je, da napiSemo
preprosti if stavek, ki preveri ali je zapisek Ze sproscen. Ce to drzi izpiS§emo opozorilo, da tega zapiska ni
mogoce sprostiti, saj je Ze sproscen (Izsek kode [5).

15

void entry_delete(Entry* parent, Entry* entry,
int entry_number,
int current_number) {
/7.
if (entry->is_freed == 0){
free(entry->entry_content) ;
entry->is_freed = 1;

}
else {

printf(”DOUBLE FREE DETECTED ABORTING");
}

/o

Listing 5: posodobljena funkcija za izbris zapiska

Ceprav uvedba zastavice is_freed zmanj$a moznost nenamerne dvojne sprostitve je ta pristop v praksi
precej omejen. Zastavica ne preprecuje zlonamernega prepisovanja metapodatkov ali manipulacije z drugimi
podatkovnimi strukturami na kopici. V vecjih projektih je takSna reSitev pogosto nezanesljiva, saj se stanje
objekta lahko spremeni na ve¢ mestih in zastavica ne zagotavlja dejanske zascite pred logi¢nim napadom

Druga mozna reSitev bi bila posodobitev verzije glibc, katera bi potem preko validacij uspes$no zaznala dvojno
sprostitev in tako prekinila izvajanje programa. ResSitev le prelozZi problem, ne pa nujno odpravi temeljne
pomankljivosti, saj imajo tudi nove verzije glibc lahko varnostne ranljivosti.

Poglejmo si Se bolj prakti¢ne resitve, ki se uporabljajo v produkciji:

» Uporaba pomnilniSsko varnih programskih jezikov: Predvsem tisti, ki vkljuCujejo samodejni
sistem za upravljanje s pomnilnikom, na primer jeziki kot so Python, Java, C#, JavaScript in drugi
visoko-nivojski jeziki. Za dodeljevanje pomnilnika poskrbi sam jezik in odgovornost ne lezi ve¢ na
programerju. Slabost tega je slabsa hitrost in u¢inkovitost programa.

+ Uporaba alternativnih in varnejsih implementacij funkcije malloc: Kot alternative nam bolj varne
implementacije omogocajo varnejsi program, brez da bi zato zrtvovali hitrost in u€inkovitost naSega
programa. Implementacije ponavadi funkcijo malloc popolnoma spremenijo kakor tudi delovanje
dodeljevanja blokov.

» Upostevanje defenzivhega programiranja/dobrih praks: Preko testiranja in igranja v peskovniku
lahko odkrijemo potencialne napade in ranljivosti nasega programa, kar omogoc¢a zaznavanje
napadov in hitro odzivanje programa na njih. Npr. blokiranje dostopa nepooblasceni osebi. Tako
poskrbimo, da kljub napadu, program 8e vedno deluje. To je predvsem pomembno v aplikacijah, kjer
je pomembna celodnevna dostopnost, visoka varnost in hitrost.

» Uporaba orodij za stati¢no analizo kode: to nam omogoca odkrivanje ranljivosti Ze v razvojnem
procesu, uporaba tako imenovanega fuzz testiranja, ki avtomati¢no generira nepredvidljive, naklju¢ne
in neveljavne vnose za testiranje funkcionalnosti programa z namenom, da ga pokvari.

7 ZAKLJUCEK

V ¢lanku smo raziskali ranljivosti, povezane z napacnim upravljanjem s pomnilnikom ter predstavili prakti¢no
demonstracijo napada dvojne sprostitve. Poudarili smo, kako pomembno je razumevanje delovanja kopice,
saj lahko napadalci s tem znanjem, izkoristijo tovrstne ranljivosti.

Analiza je pokazala, da lahko Ze preproste napake v kodi, npr. nepravilno ravnanje s kazalci, vodijo do
varnostnih posledic. Prav tako je tudi opozorila, da je pomembna previdna uporaba zunanjih knjiznic.

16

Predstavili smo tudi potencialne resitve, med glavnimi so preverjanje stanja kazalca pred sprostitvijo, uporaba
novejSih verzij knjiznic, uporaba orodij za staticno analizo kode ter uporaba jezikov z samodejnim upravljanjem
s pomnilnikom.

Predstavljeni ukrepi so koristni, vendar imajo omejitve. Preverjanje kazalcev pred sprostitvijo prepreci le
enostavne napake, ne pa logicnih zlorab v kompleksnih sistemih. Posodabljanje knjiznic zmanj$a tveganie,
vendar ne izklju€i novih ranljivosti in prinasa tezave z zdruZljivostjo. Staticna analiza pogosto daje lazne
pozitivhe rezultate ter ne zazna vseh napak med izvajanjem. Tudi jeziki z samodejnim upravljanjem
pomnilnika odpravljajo le del teZav, saj ranljivosti pogosto obstajajo v logiki aplikacije ali integraciji zunanjih
modulov.

Obstajajo tudi kompleksnejsi in nevarnejsi napadi na kopico, ki jih nismo obravnavali. Primer takih so:

» Tcache poisoning: zloraba tcache ko$a za ponovno uporabo prostih blokov pomnilnika.

* House of einherjar in House of force: manipulacija z metapodatki kopice za prevzem nadzora nad
dodeljevanjem pomnilnika.

» Heap spraying: mnozi¢no polnjenje kopice s predvidljivimi podatki, kar poveca verjetnost uspeha
napada.

Ti napadi so nevarnej$i, saj zahtevajo poglobljeno znanje o notranjih mehanizmih upravljanja s pomnilnikom
in so pogosto odporni na osnovne zascCitne ukrepe.

Smer razvoja se nagiba k reSitvam, ki temeljijo na ASLR tehnologiji, kar nakazujejo tudi novejSe raziskave
Oreo: Protecting ASLR Against Microarchitectural Attacks (Extended Version) [20].

Zaklju¢imo lahko, da je razumevanje delovanje kopice in preprecevanje kopicnih ranljivosti klju¢no za
zagotavljanje varnosti sistemov.

LITERATURA

[1] Cowan, C., Beattie, S., Johansen, J., & Wagle, P. (2003). PointGuardTM: Protecting pointers from buffer
overflow vulnerabilities. In Proceedings of the 12th USENIX Security Symposium (pp. 91-104). USENIX
Association.

[2] Erik van der Kouwe, Vinod Nigade, and Cristiano Giuffrida. 2017. DangSan: Scalable Use-after-free
Detection. In Proceedings of the Twelfth European Conference on Computer Systems (EuroSys '17).
Association for Computing Machinery, New York, NY, USA, 405—419. https://doi.org/10.1145/
3064176.3064211

[3] Heelan, S., Melham, T., & Kroening, D. (2019). Gollum: Modular and greybox exploit generation for heap
overflows in interpreters. In Proceedings of the ACM Conference on Computer and Communications
Security (pp. 1689—-1706). Association for Computing Machinery. https://doi.org/10.1145/3319535,
3354224

[4] Jia, X., Zhang, C., Su, P, Yang, Y., Huang, H., & Feng, D. (2017). Towards efficient heap overflow disco-
very. In Proceedings of the 26th USENIX Security Symposium (pp. 989-1006). USENIX Association.

[5] Gopal, A. U. S., Soori, R., Ferdman, M., & Lee, D. (2023). TAILCHECK: A Lightweight Heap Overflow
Detection Mechanism with Page Protection and Tagged Pointers. 17th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 23), 535-552. https://www.usenix.org/conference/
0osdi23/presentation/gopal

[6] L. He et al., "Automatically assessing crashes from heap overflows,"2017 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE), Urbana, IL, USA, 2017, pp. 274-279, doi:
10.1109/ASE.2017.8115640. keywords: Computer crashes;Measurement;Tools;Payloads;Indexes;Data
mining;Layout;Memory error;Heap overflow;Vulnerability assessment,

[7] Mouzarani, M., Sadeghiyan, B., & Zolfaghari, M. (2016). A smart fuzzing method for detecting heap-
based vulnerabilities in executable codes. Security and Communication Networks, 9(18), 5098-5115.
https://doi.org/10.1002/sec.1681

[8] Baradaran, S., Heidari, M., Kamali, A., & Mouzarani, M. (2023). A unit-based symbolic execution method
for detecting memory corruption vulnerabilities in executable codes. International Journal of Information
Security, 22(5), 1277-1290. https://doi.org/10.1007/s10207-023-00691-1

17

https://doi.org/10.1145/3064176.3064211
https://doi.org/10.1145/3064176.3064211
https://doi.org/10.1145/3319535.3354224
https://doi.org/10.1145/3319535.3354224
https://www.usenix.org/conference/osdi23/presentation/gopal
https://www.usenix.org/conference/osdi23/presentation/gopal
https://doi.org/10.1002/sec.1681
https://doi.org/10.1007/s10207-023-00691-1

[9] Juan Caballero, Gustavo Grieco, Mark Marron, and Antonio Nappa. 2012. Undangle: early detection
of dangling pointers in use-after-free and double-free vulnerabilities. In Proceedings of the 2012
International Symposium on Software Testing and Analysis (ISSTA 2012). Association for Computing
Machinery, New York, NY, USA, 133-143. https://doi.org/10.1145/2338965.2336769

[10] Gene Novark and Emery D. Berger. 2010. DieHarder: securing the heap. In Proceedings of the 17th
ACM conference on Computer and communications security (CCS ’10). Association for Computing
Machinery, New York, NY, USA, 573-584. https://doi.org/10.1145/1866307.1866371

[11] Zhu, K., Lu, Y., & Huang, H. (2020). Scalable static detection of use-after-free vulnerabilities in binary
code. IEEE Access, 8, 78713—78725. https://doi.org/10.1109/ACCESS.2020.2990197

[12] Qiang, W., Li, W., Jin, H., & Surbiryala, J. (2019). Mpchecker: Use-After-Free Vulnerabilities Protection
Based on Multi-Level Pointers. IEEE Access, 7, 45961—-45977. https://doi.org/10.1109/ACCESS |
2019.2908022

[13] Zekun Shen and Brendan Dolan-Gavitt. 2020. HeapExpo: Pinpointing Promoted Pointers to Prevent
Use-After-Free Vulnerabilities. In Proceedings of the 36th Annual Computer Security Applications
Conference (ACSAC °20). Association for Computing Machinery, New York, NY, USA, 454—465. https:
//doi.org/10.1145/3427228.3427645

[14] Josselin Feist, Laurent Mounier, Sébastien Bardin, Robin David, and Marie-Laure Potet. 2016. Finding
the needle in the heap: combining static analysis and dynamic symbolic execution to trigger use-after-
free. In Proceedings of the 6th Workshop on Software Security, Protection, and Reverse Engineering
(SSPREW ’16). Association for Computing Machinery, New York, NY, USA, Article 2, 1-12. https:
//doi.org/10.1145/3015135.3015137

[15] cve.org “CVE”. [Online]. Available: https://www.cve.org/

[16] Simon Hansman, Ray Hunt, A taxonomy of network and computer attacks, Computers & Security,
Volume 24, Issue 1, 2005, Pages 31-43, ISSN 0167-4048, https://doi.org/10.1016/j.cose.2004.06.011.
(https://www.sciencedirect.com/science/article/pii/S0167404804001804)

18

https://doi.org/10.1145/2338965.2336769
https://doi.org/10.1145/1866307.1866371
https://doi.org/10.1109/ACCESS.2020.2990197
https://doi.org/10.1109/ACCESS.2019.2908022
https://doi.org/10.1109/ACCESS.2019.2908022
https://doi.org/10.1145/3427228.3427645
https://doi.org/10.1145/3427228.3427645
https://doi.org/10.1145/3015135.3015137
https://doi.org/10.1145/3015135.3015137
https://www.cve.org/
https://www.sciencedirect.com/science/article/pii/S0167404804001804

[17] Mohan V. Pawar, J. Anuradha, Network Security and Types of Attacks in Network,
Procedia Computer Science, Volume 48, 2015, Pages 503-506, ISSN 1877-0509, ht-
tps://doi.org/10.1016/j.procs.2015.04.126. (https://www.sciencedirect.com/science/article/pii/
S$1877050915006353)

[18] Liu, B., Olivier, P, & Ravindran, B. (2019). Slimguard: A secure and memory-efficient heap allocator.
In Middleware 2019 - Proceedings of the 2019 20th International Middleware Conference (pp. 1-13).
Association for Computing Machinery, Inc. https://doi.org/10.1145/3361525.3361532

[19] J. Ahn, K. Lee, C. Park, H. Moon and Y. Kwon, SwiftSweeper: Defeating Use-
After-Free Bugs Using Memory Sweeper Without Stop-the-World,"in 2025 IEEE Sympo-
sium on Security and Privacy (SP), San Francisco, CA, USA, 2025, pp. 755-771, ht-
tps://doi.ieeecomputersociety.org/10.1109/SP61157.2025.00131

[20] Song, S., Zhang, J., & Yan, M. (2024). Oreo: Protecting ASLR Against Microarchitectural Attacks
(Extended Version). https://arxiv.org/abs/2412.07135

[21] Chao Ni, Liyu Shen, Xiaohu Yang, Yan Zhu, and Shaohua Wang. 2024. MegaVul: A C/C++ Vulnerability
Dataset with Comprehensive Code Representations. In Proceedings of the 21st International Conference
on Mining Software Repositories (MSR '24). Association for Computing Machinery, New York, NY, USA,
738—742. https://doi.org/10.1145/3643991.3644886

[22] Geeks for geeks. Dynamic Memory Allocation in C. URL: https://www.geeksforgeeks.org/c/
dynamic-memory-allocation-in-c-using-malloc-calloc-free-and-realloc/

[23] Azeria labs. Arm Heap Exploitation. URL: https://azeria-labs.com/
heap-exploitation-part-1-understanding-the-glibc-heap-implementation/

Domen Breznik je Student 3. letnika 1. stopnje univerzitetnega Studija na Fakulteti za racunalnistvo in
informatiko Univerze v Ljubljani. Posebej ga zanimajo podrocja programske opreme in racunalniske varnosti.

19

https://www.sciencedirect.com/science/article/pii/S1877050915006353
https://www.sciencedirect.com/science/article/pii/S1877050915006353
https://doi.org/10.1145/3361525.3361532
https://arxiv.org/abs/2412.07135
https://doi.org/10.1145/3643991.3644886
https://www.geeksforgeeks.org/c/dynamic-memory-allocation-in-c-using-malloc-calloc-free-and-realloc/
https://www.geeksforgeeks.org/c/dynamic-memory-allocation-in-c-using-malloc-calloc-free-and-realloc/
https://azeria-labs.com/heap-exploitation-part-1-understanding-the-glibc-heap-implementation/
https://azeria-labs.com/heap-exploitation-part-1-understanding-the-glibc-heap-implementation/

Mark Novak je Student 2. letnika 1. stopnje univerzitetnega Studija na Fakulteti za raCunalnistvo in informatiko
Univerze v Ljubljani. Posebej ga zanimajo podrocja razvoja videoiger, operacijski sistemi in raCunalnisSke
varnosti.

MatevZ Pesek je izredni profesor in raziskovalec na Fakulteti za ra¢unalnistvo in informatiko Univerze v
Ljubljani, kjer je diplomiral (2012) in doktoriral (2018). Od leta 2009 je ¢lan Laboratorija za raCunalnisko
grafiko in multimedije. Od leta 2024 izvaja predmeta Varnost programov in Varnost sistemov, kjer se
raziskovalno ukvarja s poucevanjem konceptov in organizacijo dogodkov s podroc¢ja racunalniSke varnosti.

20

	SEZNAM UPORABLJENIH KRATIC
	UVOD
	PREGLED PODROČJA
	SORODNA DELA
	DEFINICIJE
	Kopica
	Funkcija malloc()
	 Funkcija free()
	 Arene
	 Alokacija blokov
	 Koši

	METODOLOGIJA
	 Raziskovalno okolje
	Struktura programa
	Demonstracija napada

	ANALIZA NAPADA
	DISKUSIJA
	ZAKLJUČEK

