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Izvleček
Pričujoče	delo	vsebuje	pregled	temeljnih	idej	iz	teorije	grafov,	ki	se	uporabljajo	v	računalniški	grafiki.	Navedene	metode	se	med	dru-
gim	uporabljajo	za	stiskanje	poligonskih	mrež,	v	animaciji,	pri	določanju	vidnosti,	za	optimizacijo	upodabljanja,	prepoznavo	oblik	in	
navigacijo.	Predstavljamo	tako	uspešne	kot	neuspešne	primere	uporabe	iz	najbolj	citiranih	del	in	sodobnih	objav.	Pregled	področja	
razkriva	trend	uporabe	grafov	za	izluščenje	bistvenih	informacij	iz	danega	konteksta,	kar	se	neposredno	izraža	v	obliki	raznovrstnih	
kompresijskih	shem	in	učinkovitih	poizvedovalnih	podatkovnih	struktur.

Ključne	besede:	grafi,	računalniška	grafika,	navigacija,	povezanost,	upravljanje	vidnosti,	stiskanje	podatkov

Graphs	in	computer	graphics

Abstract	
This	paper	provides	an	overview	of	the	main	ideas	of	graph	theory	used	in	computer	graphics.	Applications	include	mesh	compres-
sion,	animation,	visibility	determination,	rendering	optimization,	shape	recognition,	and	navigation.	We	present	both	success	and	
failure	cases	from	the	most	cited	works	and	recent	publications.	Related	work	review	reveals	a	trend	in	using	graphs	for	extracting	
the	essential	information	from	a	given	context,	which	directly	manifests	itself	in	various	compression	schemes	and	efficient	querying	
data	structures.
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1	 INTRODUCTION
This paper aims to introduce the topic of graphs and 
networks to computer scientists working primarily 
in the field of computer graphics. It provides an over-
view of the main ideas, the most groundbreaking 
work, and applications where graphs are the most 
natural representation of a given problem. The paper 
is divided roughly into two parts, the first part focu-
sing on interactive graphics and object representati-
on, which are especially relevant to interactive and 
real-time graphics, and the second part focusing on 
volume representation, point clouds and light tran-
sport simulation, which are mostly used in scientific 
applications and non-interactive graphics.

Graphs are a suitable representation for any data, 
in which relationships between objects or concepts 
are of essential importance. Compared to tables, ar-
rays or textures, they encode more information about 
a given subject, albeit with a less rigid structure. Hi-
gh-level structures in graphs, such as connected com-
ponents, cliques and spanning trees, may reveal cer-
tain aspects of the data, which cannot be sufficiently 
expressed in other representational forms. Therefore, 
in many cases in computer graphics and animation, 
graphs may be the most natural, the most informa-
tive, and/or the most expressive representation. For 
example, graphs are ideal candidates for pathfinding 
in video games, motion synthesis from motion cap-
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ture in animation studios, and shape matching in 3D 
object databases.

Graphs come with their own drawbacks, howe-
ver. They are more difficult to process (especially in 
parallel), they are inherently unordered, and high-le-
vel structures first have to be extracted or computed 
before use. In practice, these drawbacks are often mi-
tigated by using graphs with a more rigid structure, 
such as octrees, or by using graphs to represent only 
a part of the data, and using other representational 
forms for the rest. Deciding what to represent with 
graphs and what not to, remains part of ongoing re-
search and a practical art. This paper hopes to highli-
ght some of the success and failure cases so that the 
reader can make an informed decision when tackling 
a new problem.

2	 GRAPHS	AND	NETWORKS
In this work, we use the term graph to describe a 
discrete object composed of vertices and edges. De-
pending on the context, both vertices and edges may 
represent different things, from geometric primitives 
and their adjacencies to animation states and their 
composability. See the book Graphs on Surfaces by 
Mohar and Thomassen [18] for a comprehensive 
introduction on the subject. In the following secti-
ons, we list the most common applications in which 
graphs are used in the field of computer graphics. 
Each section first explains the problem at hand, then 
shows how graphs can be used to encode it, and fi-
nally, the most relevant ideas and publications that 
use such graphs for implementing the solutions to 
the problem.

2.1	 Connectivity	graphs
Modern graphics processing units (GPUs) are spe-
cialized hardware for displaying polygonal meshes, 
specifically triangular meshes. In real-time applica-
tions, such meshes are usually stored in on the GPU 
as an array of vertices together with an array of indi-
ces. The vertices are usually equipped with attributes 
describing, for example, their location in space, the 
normal of the surface at that location, or texture ma-
pping information. The indices, on the other hand, 
describe the connectivity between the vertices, and 
may be used to represent points, edges, or triangles. 
The most direct mapping from polygonal meshes 
to graphs is to map mesh vertices to graph vertices, 
and edges of geometric primitives to graph edges. 
In 3D modeling applications, a winged edge repre-
sentation [3] is much more common, since it simpli-
fies many types of adjacency queries by including 
pointers to adjacent geometric primitives. In a win-
ged edge representation, for example, all geometric 
primitives (points, lines, and faces) may be mapped 
to graph vertices, while graph edges may represent 
adjacencies.

Common tasks in the field of mesh representation 
include connectivity or geometry compression, opti-
mizing the curvature of the surface, minimizing the 
deformation of the triangles, maximizing the internal 
angles of the triangles, and generating new vertices 
and triangles from a low resolution mesh.

One of the most popular algorithms in computer 
graphics is the Catmull-Clark subdivision algorithm 
[7], used to recursively generate smooth subdivisi-
on surfaces from a low-resolution mesh. Created by 

Figure	1:	The	six	steps	of	the	Catmull-Clark	subdivision	scheme.	A	vertex	is	created	for	each	face,	vertex,	and	vertex	from	the	original	mesh,	
then	the	new	vertices	are	appropriately	connected	together	to	form	the	subdivided	mesh.	Author:	UserTwoSix,	under	CC	BY-SA	4.0.
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scientists at Pixar, the algorithm is used heavily in 
the movie industry, where it significantly facilitates 
modeling of detailed meshes. The algorithm works 
by fitting B-spline surfaces to the control mesh, and 
then generating new points and geometric primitives 
from that B-spline. This approach relies heavily on 
the topology of the original mesh, since it is difficult 
to join the B-spline surface patches at vertices with 
odd degrees. Rectangular control-point meshes re-
duce to standard B-spline surfaces, which are shown 
to be continuous both in tangent and in curvature, 
whereas triangular meshes may include so-called 
extraordinary points, at which the surface can be 
shown to be continuous at least in tangent. A diffe-
rent algorithm, created by Doo and Sabin [10, 11], 
works similarly well on arbitrary meshes. A simpler 
algorithm was later created by Loop [16], with the 
intention of being efficient to evaluate. In fact, after 
programmable GPUs became widely accessible, the 
algorithm was shown to be efficient to evaluate on 
programmable GPU tessellation units [17]. Topologi-
cally, all the listed algorithms work in a similar fashi-
on, by mapping a graph corresponding to a winged 
edge representation back to a mesh, effectively cre-
ating a mesh vertex for each geometric primitive in 
the original mesh (see Figure 1).

Meshes require notoriously large amounts of 
data to be accurately represented. Fortunately, sur-
faces usually exhibit a high degree of redundancy or 
predictability; therefore, compression can be used to 
efficiently transmit meshes, although an uncompres-
sed form is required by the GPU. Usually, geomet-

Figure	2:	Demonstration	of	the	edgebreaker	algorithm	and	the	5	different	cases	during	traversal.

ry information (e.g. positions, normals, tangents) is 
compressed separately from connectivity informa-
tion (indices describing geometric primitives, such 
as triangles). The most widely used algorithm for 
connectivity compression is Rossignac’s edgebreaker 
[22], used in the popular Draco mesh compression 
format. Edgebreaker permutes the list of vertices so 
that the connectivity mostly reduces to common pat-
terns, such as triangle lists or triangle fans. The trian-
gles can be further sorted so that geometric adjacency 
is mostly respected in the list. Given a triangle, any 
one of the three edges can be extended with respect 
to the parallelogram rule to generate a new triangle. 
Consequently, the list of triangles can be generated 
with a walk across adjacent triangles, where only one 
of five events can occur at each triangle (see Figure 
2). The resulting list of events is highly compressible.

The accuracy of the above mesh reconstruction 
relies on the regularity of the mesh. The geometry 
of successive triangles, which closely match the pre-
dicted parallelogram, can be efficiently compressed. 
On the other hand, irregularities exhibit large devia-
tions from the predictions and consequently require 
more data to be accurately reconstructed. This fact 
is exploited by Sorkine and Cohen-Or [25], who de-
veloped a method for mesh regularization for alte-
ring the geometry of a mesh so that it is more pre-
dictable and compressible. The method retains the 
connectivity information, but alters the geometry in 
the least squares sense by choosing a set of control 
points from the existing vertices and then solving a 
sparse linear system to compute the positions of the 
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rest of the vertices. The constraints can be weighted 
to balance the control point error and fairness (which 
corresponds to the regularity of the mesh). Naturally, 
more control points corresponds to a more detailed 
mesh (see Figure 3).

For further information on connectivity graphs 
and mesh compression, we refer the reader to the 
survey paper by Alliez et al. [2], where the authors 
discuss several single-rate and progressive schemes, 
along with the optimality of the approaches.

2.2 Skeletons
Connectivity graphs are often much too complex 
for high-level tasks, such as animation and shape 
matching, for which simplified representations are 
usually preferred. Such simplified, high-level repre-
sentations preserve only the most fundamental in-
formation about the overall shape of the mesh and 
disregard any detailed geometry and connectivity 
information. Generation of such representations is 
closely related to the field of computational topology.

Figure	3:	Least-squares	meshes	with	varying	amounts	of	control	points:	200	(left),	1000	(center),	and	3000	(right).	Image	courtesy	of	O.	Sorkine	[25].

Figure	4:	An	example	skeleton	of	a	hand.	Source:	Blender	Foundation,	
under	CC	BY-SA	3.0.

In interactive computer graphics, a very common 
technique for mesh animation is through skeleton 
manipula- tion. Skeletons represent the fundamen-
tal shape of a mesh with a set of bones connected 
with joints (see Figure 4). A bone is simply a rigid 
transformation relative to the parent bone, whereas 
a joint represents how the bones are connected to-
gether to form a structure. In graph terminology, a 
bone is a vertex and a joint is an edge, and a skele-
ton is a tree. When a bone moves, all descendants of 
that bone are affected by its transformation, so that 
the transformation of a leaf bone is the product of 
the transformations of the bones from the root bone 
to the leaf bone. Mesh vertices are then related to 
bones through weights, which describe the strength 
of influence of a particular bone on the transforma-
tion of a vertex.

Skeleton creation can be a tedious process, usual-
ly done by hand and requiring a considerable level 
of expertise. The work by Wade and Parent [29] is 
a pioneering example of automating skeleton creati-
on. Their approach works by converting the surface 
mesh to a volume representation, approximating the 
discrete signed distance function, and then recon-
structing the discrete medial axis. Finally, the disc-
rete medial axis is smoothed and simplified, and a 
graph is extracted, giving a reasonable candidate for 
a control skeleton. The generated skeleton can be re-
fined by hand, which is usually a much simpler task 
than creating it from scratch.

For further information on skeletons, we refer the 
reader to the book chapter on Skeletal Structures by 
Biasotti et al. [4] from the book Shape Analysis and 
Structuring [12].
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2.3	 Reeb	graphs
A completely different approach is taken by Tierny 
in his PhD thesis [27], where he exploits the tools of 
computational topology to achieve skeletonization, 
and applies it to shape matching rather than animati-
on. Morse functions are a specific class of smooth real 
functions defined on a manifold (usually on a surfa-
ce). When the connected components of the level sets 
of such functions are contracted to points, and two 
points are connected with an edge whenever there 
exists a continuation between their respective level 
sets, the resulting graph is called a Reeb graph (see 
Figure 5). Such a representation forms a topological 
skeleton in 3D space. Reeb graphs have proven to be 
very flexible and robust representations of 3D sha-
pes, especially because shape invariants can be made 
explicit through the underlying Morse function. As 
such, they have been used in many different applica-
tions, including shape matching and retrieval, surfa-

ce parametrization, mesh simplification and segmen-
tation, and animation [4].

2.4	 Shock	graphs
On many occasions, it may be beneficial to descri-
be a shape (e.g. a parametrized curve or a surface) 
through a temporal evolution process, since we can 
identify and specifically represent important events, 
such as topological changes. Such singularities of the 
evolution process may be arranged in a graph that 
captures the essence of the shape in question. Sid-
diqui et al. [24] describe the 2D shape by considering 
a special form of a temporal evolution process from 
the medial axis, and the singularities that this process 
creates. These so-called shocks can be used to derive 
structural descriptors. Shock graphs represent the 
same topological features as medial axis transforms, 
but enhance them with the information related to the 
temporal evolution process [4]. The authors of the 
method presented a way to organize such shocks in 
a graph that can be simplified and analyzed through 
a specialized shock graph grammar. The grammar is 
in a sense a linearized description of a shape, and can 
be used as such for shape matching.

2.5	Motion	graphs
In movies and video games, realistic motion (espe-
cially of humans) is an important requirement, con-
tributing significantly to the perceived realism. Mo-
dern approaches usually start with motion capture 
data and employ machine learning to infer transfor-
mations and transitions. The work of Kovar et al. [14] 
is a pioneering example of extracting motion charac-
teristics from real life capture data. The method ge-
nerates convincing synthetic motion that retains the 
quality of the captured motion, while meeting the 

Figure	5:  Reeb	graph	of	a	torus.	Source:	I.	Voyager,	under	CC	PDM	1.0.

Figure	6:  An	example	navigation	mesh	(left)	and	the	two	possible	paths	between	the	start	and	end	points.	Source:	 
Unity	Editor	Manual	and	Scripting	Reference,	under	CC	BY-NC-ND	4.0.
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user’s requirements such as direction of travel and 
type of movement. The authors achieve this by detec-
ting motion clips, construct a motion graph from the-
se clips, and then use graph search techniques to find 
sequences that satisfy the given demands. As such, a 
motion graph is composed of vertices representing 
skeleton poses and directed edges representing the 
transitions (motion clips) between them. A trivial 
motion graph can be constructed from the captured 
motion by simply stitching together motion clips in a 
linear sequence, but this approach cannot be used to 
generate new motion. The authors enhance the trivi-
al graph by adding new edges between vertices whe-
re there exists a motion clip with the corresponding 
start and end poses. Since it is unlikely that two po-
ses would match perfectly, the authors allow a small 
error and insert a synthetic motion clip by linearly 
interpolating the two poses. This results in a much 
more complex graph with many more connections, 
and therefore many more synthetic motions possible. 
Additionally, each motion clip may be labeled with 
different attributes so that, during motion synthesis, 
pathfinding only considers motion clips including, 
for example, running or crouching.

2.6	 Navigation	graphs
Player movement in video games depends comple-
tely on the actions of the player. There is no collision 
avoidance, steering, or pathfinding involved. Col-
lisions are usually handled by the physics engine, 
and pathfinding is left up to the player. Non-player 
character movement, on the other hand, requires the 
knowledge of walkable areas in a scene and how the-
se areas are connected together to be able to produce 
convincing and apparently smart motion behavior. 
The navigation problem can be broken down into 
three parts: the first is to identify the walkable areas 

in a scene, the second is to break down these areas 
into smaller regions in which local steering behavior 
suffices for effective navigation, and the third is to 
connect the smaller regions together with connecti-
ons where one can pass from one region to another. 
The regions of the walkable areas can be represented 
with vertices, which, together with the connections, 
form a navigation graph. Since the vertices and edges 
of the navigation graph require additional geometric 
information for local steering behavior, such as the 
shape and size of a region, the resulting structure is 
usually referred to as the navigation mesh (see Fi-
gure 6. The navigation problem is thus reduced to the 
shortest path problem in a navigation graph, which 
can be efficiently solved, for example, with the A* al-
gorithm. Furthermore, hierarchical pathfinding can si-
gnificantly reduce the time requirements by arranging 
the navigable areas into a hierarchy (e.g. quadtree).

Although having been automated to a large 
extent, navigation mesh construction remains a dif-
ficult problem and is often deferred to the artist buil-
ding the scene. The work of Oliva and Pelechano [19, 
20] addresses automatic navigation mesh generation. 
The first method [19] works in 2D, and addresses the 
decomposition of a polygon into convex subregions 
(cells) joined with line segments (portals) at intersec-
tions of adjacent cells. The subregions become verti-
ces of a graph and the portals become edges, toge-
ther forming a graph called the cell and portal graph 
(CPG). Navigation proceeds by employing a graph 
pathfinding algorithm followed by local steering be-
havior within a cell. Many similar techniques exist, 
some of them based on Delaunay triangulations or 
Voronoi diagrams, but the method of Oliva and Pe-
lechano is the most common in practice because it is 
fast to compute and robust for use in computer ga-
mes. The authors later extended the work to 3D mul-

Figure	7:  Full	and	reduced	visibility	graphs	between	the	vertices	of	a	2D	scene.	Non-tangential	connections,	which	are	considered	redundant	and	are	
removed	in	the	reduced	visibility	graph,	are	drawn	with	dashed	lines.
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tilayered environments [20], where walkable areas of 
a map are automatically extracted through voxelizati-
on, then the CPG is calculated with the previous me-
thod. Similar approaches have been successfully inte-
grated into some of the most popular game engines, 
such as Unity and Unreal, although manual tuning is 
often still required to remove potential inaccuracies.

Navigation graphs are also used extensively in 
robot path planning. In these scenarios, a represen-
tation of the environment must first be acquired and 
put into a suitable form for navigation graph genera-
tion. The work of Pütz et al. [21] uses a laser scanner 
mounted on top of a robot to generate a point cloud 
of the surrounding terrain, then converts it to a tri-
angle mesh and generates a CPG. The CPG is further 
enriched with information about roughness and traf-
ficability, which are estimated from the point cloud.

Further information on navigation meshes can be 
found in the comparative study by van Toll et al. [28].

2.7	 Visibility	graphs
The visibility graph is a fundamental geometric 
structure used in many different application scena-
rios, such as motion planning [30] and rendering 
optimization [5]. It is a graph of mutually visible lo-
cations in a scene, so that only the cell in which the 
camera is located and the adjacent cells must be ren-
dered. In computer graphics, it is often used together 
with navigation graphs, which break down a scene 
into convex cells, in which all points are mutually vi-
sible. While navigation graphs are usually more fine-
-grained structures, nodes in visibility graphs tend 
to represent larger areas, so that even a quick visibi-
lity query can result in a large performance benefit. 
Nodes, which are redundant in a given context, are 
often removed and the resulting graph is called a re-
duced visibility graph (see Figure 7).

2.8	Mixture	graphs
Segmentation volumes are becoming a first-class mo-
dality in many imaging scenarios, such as medical 
imaging, biology, histopathology, material sciences, 
etc. Each voxel in a segmentation volume is an in-
teger label of a specific instance, and as such cannot 
be interpolated for the purposes of rendering. Altho-
ugh such volumes are highly compressible, queries 
(especially range queries) still require considerable 
bandwidth, which makes them impractical. While 
the capturing resolution and storage capacities are 

steadily increasing, query efficiency remains the 
main bottleneck in many volume-related applicati-
on. Al-Thelaya et al. [1] present a method for repre-
senting segmentation volumes in a form of a directed 
acyclic graph (DAG) to speed up queries and at the 
same time efficiently compress the data. They define 
mixtures, specific convex combinations of segmen-
tation labels, and organize them into DAGs, where 
each mixture is either explicitly stored or it is a linear 
interpolation of exactly two existing mixtures. Such 
mixture graphs can be efficiently stored and queried 
on a modern GPU, as demonstrated by the authors in 
several application scenarios.

2.9	 Path	graphs
Photo-realistic computer images are nowadays al-
most exclusively generated with a variant of the path 
tracing algorithm. Path tracing solves the light tran-
sport equation by shooting numerous light rays into 
the scene and simulating interactions between light 
and materials until a light source is hit. These interac-
tions are inherently stochastic, necessitating a Monte 
Carlo approach. Unfortunately, the Monte Carlo me-
thod relies on the independence of samples, which 
means that when we start simulating the next light 
ray, we have to throw away all information gathered 
while traversing the scene, including ray-scene inter-
sections, shadows, and shading information.

A recent publication by Deng et al. [9] describes 
an optimization of the path tracing algorithm that 
considers nearby paths through a single pixel. Whi-
le bare bones path tracing independently evaluates 
each path through a scene and forgets all the infor-
mation gathered through this process, path graphs 
consider clusters of at most K paths. Consequently, 
the rays through a single pixel do not form a tree 
anymore (a collection of individual paths through 
the scene, originating from a common location – the 
camera), but by adding connections between the en-
dpoints of the neighboring paths it becomes a DAG. 
The resulting graph therefore contains three types of 
connections: light edges sampled for next-event esti-
mation, continuation edges created through BSDF 
sampling to extend paths, and neighbor edges con-
necting to spatial neighbors within each cluster. By 
aggregating and propagating the radiance through 
these new connections, the convergence of the rende-
ring is significantly improved, as such operations are 
simpler than light propagation.
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2.10	 Shader	graphs
In modern graphics pipelines, the color of a pixel is 
defined by the shader, which outputs the final color 
given the material properties and illumination infor-
mation. Traditionally, shaders are written in speciali-
zed languages, requiring deep knowledge about pro-
gramming and GPU architectures, and as such are 
not suitable for artists and content creators. When 
describing materials, shaders can be thought of as a 
sequence of common operations determining how 
the light behaves when interacting with a given ma-
terial. Such operations may include sampling from 
common spherical distributions and evaluating the 
Fresnel term. However, without any visual feedback, 
even such high-level computations remain too ab-
stract for artists and content creators. Shader graphs 
aim to solve this problem.

Jensen et al. [13] present a system for interactive 
shader development in the form of a computational 
graph. Nodes represent operations ranging from 
simple multiplications to complex shading models, 
whereas edges are data paths connecting the output 
sockets of some nodes to the input sockets of other 
nodes. Sockets have types associated such that no 
invalid connections can be made. For example, if a 
node requires a 2D vector at a given input, the sy-
stem will prevent connecting color data to it. Such 
a system allows for automatic code optimization 
techniques to be used. Furthermore, as individual 
computational nodes can compute relatively simple 
functions, it is often possible to compute the gradi-
ent as well, enabling solutions to inverse problems, 
such as determining material properties from pho-
tographs. Since its publication, the system has been 

successfully integrated into many popular game en-
gines and 3D modeling software such as Blender (see 
Figure 8), Maya, and Unity.

2.11	 Sparse	voxel	octrees
Triangle meshes have traditionally been the most 
common representation of surfaces because of their 
ease of processing and compactness for representing 
planar surfaces. Laine and Karras [15] note that the-
se advantages are becoming less significant as GPU 
storage is becoming less of a bottleneck. They pro-
pose a hierarchical representation of surfaces with 
voxels, which can efficiently store geometry, shading 
and color information in the same data structure. In 

Figure	8:  An	example	shader	graph	showing	a	volumetric	shader	in	Blender.

Figure	9:  An	example	sparse	voxel	octree	encoding	a	dense	3D	model.	
Note	that	this	model	does	not	store	information	about	the	
actual	surface,	hence	the	blocky	artifacts	on	the	boundary.	

Author:	Acodered,	under	CC	BY-SA	3.0.
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a sparse voxel octree, the nodes represent a region of 
space, and are equipped with child occupancy fla-
gs. See Figure 9 for an example sparse voxel octree. 
Every node may have up to eight children, which 
provide additional geometric detail inside a certain 
subvolume. This means that accessing the geometric 
data of a specific point in space requires no more 
than O(log n) steps, where n is the number of nodes 
in the octree. An efficient encoding solution of the 
resulting sparse voxel octree is presented in the pa-
per and showcased in a GPU ray-tracing application, 
where it achieves significant performance benefits 
compared to triangle meshes. If a less detailed model 
is needed, for example in streaming applications or 
scenarios requiring varying levels of detail, the oc-
tree can simply be pruned at a certain depth while 
remaining valid. After more than 10 years since pu-
blication we can safely admit that sparse voxel octre-
es did not replace triangle meshes, probably because 
of the lack of authoring tools and efficient rendering 
solutions with existing GPU architectures, as well 
as a non-trivial integration with common animation  
systems.

2.12	 Point	clouds
Point clouds are sparse representations of surfaces 
and volumes. They are sets of points in space with 
additional attributes, such as colors, surface normals, 
and light bounces. Point clouds are generally produ-
ced by 3D scanning devices, such as LIDAR scan-
ners, or by photogrammetry software. Since points 
represent infinitely small parts of surfaces or volu-
mes, rendering them convincingly is not trivial, but 
many other tasks are greatly simplified. Common 
tasks include efficient storage, rendering, compres-
sion, alignment and registration, and conversion to 
other forms of representation, usually triangle me-
shes. Graphs are often used to provide a general 
shape of the point cloud for the purposes of efficient 
compression of attributes and for registration.

Octrees can be used for storing point cloud data 
while at the same time serving as an efficient spa-
tial data structure. Similarly to sparse voxel octrees 
for storing surface data, planes can be used as sim-
ple predictors of subtree occupancy, as demonstra-
ted by Schnabel and Klein [23]. Their method works 
by imposing an octree structure on the point cloud, 
quantizing the points to the octree cell centers, and 
then computing the occupancy predictors with linear 

least squares approximation. Any differences from 
the original dataset are stored in the octree. Apart 
from point locations, the authors show that the line-
ar least squares approximation also works extremely 
well with other attributes, for example colors. This 
approach elegantly enables progressive decoding of 
the point cloud when traversing it in a breadth-first 
manner, which is beneficial when transmitting the 
dataset over a network.

Most point cloud storage and compression me-
thods focus on efficiently encoding point positions, 
but disregard other attributes, such as colors and nor-
mals. The above approach uses linear approximation 
for all attributes, which is in many cases inadequate. 
The method of Zhang et al. [31] specifically addres-
ses this problem by employing a graph transform 
(Karhunen-Loève transform) from the field of graph 
signal processing to more effectively compress the 
data domain. The method defines a precision matrix 
on the graph, formed by the weighted adjacencies, 
then applies the transform on the matrix (assuming 
a Gaussian Markov random field), compacting the 
data and making it efficiently compressible. This is a 
case in which similarities in point attributes are natu-
rally represented with connections within the graph 
that captures the general shape of the point cloud.

While both above methods operate on static point 
clouds, Thanou et al. [26] extend the compression of 
point clouds to point cloud sequences, where point 
positions and colors change smoothly over time. Such 
data commonly arise, for example, from RGBD video 
cameras, which are becoming increasingly popular, 
especially in video conferencing applications. As the 
frames usually change smoothly, the data is in theory 
highly compressible. Predicting the movement of the 
points is not trivial, though, as the number of points 
changes from frame to frame, and the points have 
no explicit correspondence between them, let alone 
a rigid transformation. The method works by impo-
sing a graph structure on each point cloud so that 
the problem of motion estimation reduces to feature 
matching between successive graphs. Local features 
are computed with spectral graph wavelets, which 
facilitate feature matching. Motion is estimated on a 
sparse subset of the graph nodes, and the motion of 
other nodes is estimated through interpolation, by 
solving a graph-based regularization problem.

The above paper acknowledges the problem of 
high cost of lossless geometry coding. De Oliveira 
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Rente et al. [8] address this very problem with a lossy 
graph-based coding scheme for static point cloud ge-
ometry. The algorithm consists of two layers: a base 
layer, which is encoded with a scalable octree (being 
the most popular approach nowadays), and a graph-
-transform-based enhancement layer. This allows a 
coarser but highly compressed approximation to be 
displayed before the details (encoded with efficient 
but lossy compression) are added.

For further information on point cloud compres-
sion, we refer the reader to the survey paper by Cao 
et al. [6].

3	 DISCUSSION
Graphs found their way into computer graphics as 
flexible, easy-to-implement, and robust structures 
for representing various kinds of data and their re-
lations. They have been proven useful in applicati-
ons such as mesh compression, animation, naviga-
tion, rendering and shape recognition. An overview 
of the graphs presented in this paper, along with 
the semantics of their constituent components, is 

shown in Table 1. After reviewing the publications 
from different fields, we see a trend in using graphs 
for extracting the essential information from a given 
context, for example topological changes in a shape, 
or scene connectivity, a trend which directly mani-
fests itself in various compression schemes and effi-
cient querying data structures. However, advanced 
results from network analysis seem to be rarely used, 
except for a few outstanding exceptions, e.g. [24, 27, 
31]. Most innovation seems to reside in the connecti-
on between the actual data and the high-level graph 
representation, which we believe to be a vast field for 
further research. In particular, applications which 
tend to generate large and complex graphs, such as 
light transport simulations, would probably benefit 
from the approaches from network analysis.

It seems that nowadays machine learning is ta-
king over many research fields mentioned in this 
work, possibly rendering the graph-based approa-
ches obsolete. This applies to a large degree to mo-
tion synthesis, animation, material synthesis, object 
recognition, among others. Nevertheless, some 

Table	1:	Graphs	in	computer	graphics,	their	semantics,	and	usage.

Graph Vertices Edges Usage References

Connectivity	
graph

geometric	primitives adjacencies
surface	representation,	mesh	 
compression,	subdivision	modeling

[3,	7,	10,	11,	16,
17,	2]

Skeleton joints bones
animation,	motion	synthesis,	shape	
matching

[29]

Reeb	graph level	sets	of	Morse	functions level	set	continuation
shape	matching,	mesh	simplification,	
esh	segmentation,	animation

[27]

Shock	graph
singularities	of	the	temporal	
evolution	of	a	shape

shock	adjacencies
shape	matching,	object	recognition,	
computer	vision

[24]

Motion	graph skeleton	poses motion	clips animation,	motion	synthesis [14]

Navigation	
graph

simple	walkable	regions
connections	between	
walkable	regions

navigation,	path	planning [19,	20,	21,	28]

Visibility	
graph

regions	of	space
mutual	visibility	between	
regions	of	space

rendering,	artificial	intelligence [5,	30]

Mixture	
graph

subvolumes subvolume	mixtures
volume	rendering,	segmentation	volume	
compression,	3D	imaging

[1]

Path	graph light-material	interaction	
locations

collision-free	light	paths rendering,	light	transport	simulation [9]

Shader	graph
shading	operations data	paths

rendering,	material	synthesis,	shader	
optimization

[13]

Sparse	voxel	
octree

regions	of	space	and	enclosed	
surfaces

subregions	and	surface	
refinement

surface	representation,	rendering,	level	
of	detail

[15]

Point	cloud	
shape
graph

representative	points spatial	or	other	similarities
point	cloud	compression,	motion	
prediction,	shape	matching

[23,	31,	26,	8,	6]
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graphs have survived for a very long time, inclu-
ding connectivity graphs, skeletons, and navigation 
graphs, and they are probably not going to be re-
placed anytime soon due to their effectiveness and 
ease of implementation. Taking advantage of both 
machine-learning-based and graph-based approa-
ches could possibly revolutionize these fields or at 
least simplify the creation of the graphs to facilitate 
the workflows of content creators. Such advances are 
already happening in the form of mesh generation, 
material synthesis, automatic skeletonization, and 
neural-network-generated scene graphs.

4	 CONCLUSION
We presented an overview of the main topics in the 
intersection of the fields of computer graphics and 
graph theory. We listed the most commonly used 
graphs, recent advancements and some of the most 
groundbreaking research. Our review revealed a 
trend in using graphs for extracting the essential 
information for the purposes of data compression, 
shape representation, and efficient querying. While 
some of the applications of graphs, especially object 
recognition and motion synthesis, are being slowly 
replaced with deep learning approaches, graphs are 
probably going to remain the standard workhor-
se in some of the important applications in video 
game industry, such as mesh representation and  
navigation.
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