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Izvleček
V	delu	predstavimo	nenadzorovan	pristop	za	detekcijo	vizualnih	anomalij	v	medicinskih	slikah,	kjer	je	cilj	odkriti	vizualne	značilnosti,	
ki	pomembno	odstopajo	od	pričakovane	normalne	predstavitve.	Glede	na	naravo	pojava	anomalij	in	kompleksnih	procesov,	ki	jih	tvo-
rijo,	je	težko	pridobiti	ekspertno	označene	podatke.	Pridobitev	tako	označenih	podatkov	je	še	posebej	zahtevna	na	biomedicinskem	
področju,	kjer	nam	take	podatke	lahko	zagotovijo	zgolj	domenski	eksperti.	Poleg	tega	so	podatki	na	biomedicinski	domeni	veliko	bolj	
kompleksni	tako	z	vidika	njihove	predstavitve	kot	dimenzionalnosti.	V	tem	delu	ta	problem	naslovimo	na	nenadzorovan	način	z	upora-
bo	metode	za	preslikavo	slika-v-sliko,	ki	pomembno	izboljša	trenutne	nenadzorovane	pristope	in	deluje	z	zmogljivostjo,	ki	je	podobna	
nadzorovanemu	pristopu.
Ključne	besede:	detekcija	anomalij,	nenadzorovano	učenje,	globoko	učenje,	generativne	nasprotniške	mreže,	preslikave	slika-v-sliko,	
digitalna	patologija

Abstract	
Detection	of	visual	anomalies	refers	to	the	problem	of	finding	patterns	in	different	imaging	data	that	do	not	conform	to	the	expected	
visual	appearance,	and	is	a	widely	studied	problem	in	different	domains.	Due	to	the	nature	of	anomaly	occurrences	and	underlying	
generating	processes,	it	is	hard	to	characterize	them	and	obtain	labelled	data.	Obtaining	labelled	data	is	especially	difficult	in	bio-
medical	applications,	where	only	trained	domain	experts	can	provide	labels,	which	are	often	diverse	and	complex	to	a	large	degree.	
The	recently	presented	approaches	for	unsupervised	detection	of	visual	anomalies	omit	the	need	for	labelled	data	and	demonstrate	
promising	results	in	domains	where	anomalous	samples	significantly	deviate	from	the	normal	appearance.	Despite	promising	re-
sults,	the	performance	of	such	approaches	still	lags	behind	supervised	approaches	and	does	not	provide	a	universal	solution.	In	this	
work,	we	present	an	image-to-image	translation-based	framework	that	significantly	surpasses	the	performance	of	existing	unsuper-
vised	methods	and	approaches	the	performance	of	supervised	methods	in	a	challenging	domain	of	cancerous	region	detection	in	
histology	imagery.
Keywords:	Anomaly	detection,	unsupervised	learning,	deep-learning,	generative-adversarial-networks,	image-to-image	translation,	
digital	pathology

1 INTRODUCTION
Anomaly detection represents an important process of 
determining instances that stand out from the rest of 
the data. Detecting such occurrences in different data 
modalities has wide applications in different domains 
such as fraud detection, cyber-intrusion, industrial in-

spection, and medical imaging [Chandola et al., 2009]. 
Detecting anomalies in high-dimensional data (e.g. 
images) is a particularly challenging problem that has 
recently seen a significant rise of interest, due to the 
prevalence of deep-learning-based methods.
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The success of current deep-learning-based me-
thods has mostly relied on the abundance of availa-
ble data. Anomalies generally occur rarely, in diffe-
rent shapes and forms, and are thus extremely hard 
or even impossible to label.

Supervised deep-learning-based anomaly detec-
tion approaches have seen great success in different 
industrial and medical application domains [Eh-
teshami Bejnordi et al., 2017, Tabernik et al., 2019]. 
The success of such methods is the most evident in 
the domains with well-known characterization (and 
possibly a finite set) of the anomalies and abundan-
ce of labeled data. Specific to the detection of visual 
anomalies, we usually also want to localize the actual 
anomalous region in the image. Obtaining such deta-
iled labels to learn supervised models is a costly pro-
cess and in many cases also impossible. There is an 
abundance of data available in the biomedical doma-
in, but it is usually of much higher complexity and 
diversity. Domain complexity prevents large-scale 
crowd annotation efforts and only trained biomedi-
cal experts can usually annotate such data.

Weakly supervised approaches address such 
problems by requiring only image-level labels (e.g. 
disease present or not) and are able to detect and de-
lineate anomalous regions solely from such weakly 
labeled data, without the need for detailed pixel or 
patch-level labels [Campanella et al., 2019]. On the 
contrary, few-shot approaches reduce the number of 
required labeled samples to the least possible amo-
unt [Tian et al., 2020].

In an unsupervised setting, only normal appea-
rance samples are available (e.g. healthy, defect-free), 
which are usually available in larger quantities and 
are easier to obtain. Deep generative methods, in a 
form of autoencoders (AE) or generative adversarial 
networks (GAN), have been recently applied to the 
problem of unsupervised detection of visual anoma-
lies and have shown promising results in different 
industrial and medical application domains [Schle-
gl et al., 2019, Baur et al., 2020b, Baur et al., 2020a, 
Bergmann et al., 2020]. Current approaches require 
normal appearance samples for training, in order 
to detect and segment deviations from that nor-
mal appearance, without the need for labeled data. 
They usually model normal appearance with low-
-resolution AE or GAN models and the overall per-
formance still lags significantly behind supervised  
approaches.

In this work, we present a novel high-resolution 
image-to-image translation-based method for unsu-
pervised detection of visual anomalies that signifi-
cantly surpasses the performance of existing unsu-
pervised ap- proaches and closes the gap towards 
the supervised counterparts. We particularly focus 
on a challenging problem of cancerous region de-
tection from gigapixel histology imagery, which has 
been already addressed in a supervised [Ehteshami 
Bejnordi et al., 2017], as well as in a weakly supervi-
sed setting [Campanella et al., 2019]. Extremely large 
histology imagery (patch-based processing) and the 
highly variable appearance of the different tissue re-
gions represent a unique challenge for existing unsu-
pervised approaches.

2	 IMAGE-TO-IMAGE	TRANSLATION	AS	 
A	PRETEXT	FOR	ANOMALY	DETECTION

Inspired by the multimodal image-to-image transla-
tion methods [Huang et al., 2018, Lee et al., 2020], we 
propose an example guided image translation me-
thod (Figure 1) [Stepec and Skocaj, 2021], which in 
comparison with SteGANomaly [Baur et al., 2020a] 
enables anomaly detection without cycle-reconstruc-
tion during the inference, specially crafted interme-
diate domain distribution, and Gaussian filtering. Si-
milar to MUNIT [Huang et al., 2018], we assume that 
the latent space of images can be decomposed into 
content and style spaces. We also assume that ima-
ges in both domains share a common content space 
C, as well as style space S (i.e. they both come from 
the same healthy	domain). This differs from MUNIT 
[Huang et al., 2018], where style space is not shared, 
due to semantically different domains X and Y . Si-
milar to MUNIT [Huang et al., 2018], our translation 
model consists out of encoder Eij and decoder Gj ne-
tworks for each space i ∈ {C, S} and domains j ∈ {X, 
Y}. Those subnetworks are used for autoencoding, as 
well as cross-domain translation, by interchanging 
encoders and decoders from different domains. Style 
latent codes sx and sy are randomly drawn and ad-
ditionally transformed by a multilayer perceptron 
(MLP) network f for a cross-domain translation. Ran-
domness addresses the memorization effect, large-
ly present in autoencoder-based anomaly detection 
approaches.

During anomaly detection (Figure 1), an input 
image x is encoded with Ecx, to produce content vec-
tor cx, which is then joined with the style code sy, 
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extracted from the original image x, with the style 
encoder Esy of the target domain Y . This presents an 
input to decoder Gy, which generates y. This is ba-
sically an example guided image translation, used 
also in MUNIT [Huang et al., 2018] and DRIT++ [Lee 
et al., 2020] methods. Content-style space decompo-
sition is especially well suited for histopathological 
analysis due to different staining procedures, which 
causes the samples to significantly deviate in their 
visual appearance. Style-guided translation ensures 
that the closest looking normal appearance is found, 
taking into account also the staining appearance. We 
then measure an anomaly score using distance me-
tric d (e.g. perceptual LPIPS distance [Zhang et al., 
2018] or Structure Similarity Index (SSIM) [Wang et 
al., 2004]), between the original image x and its re-
construction*.

3	 EXPERIMENTS	AND	RESULTS

3.1 Histology Imagery Dataset.
We address the aforementioned problems of ano-
maly detection pipeline on a challenging domain of 
digital pathology, where whole-slide histology ima-
ges (WSI) are used for diagnostic assessment of the 
spread of cancer. This particular problem was alrea-
dy addressed in a supervised setting [Ehteshami Bej-
nordi et al., 2017], as a competition2, with provided 

Figure	1:	Our	proposed	unsupervised	anomaly	detection	method,	based	on	the	image-to-image	translation.	We	disentangle	a	latent	space	 
into	shared	content	and	style	spaces,	implemented	via	domain-specific	(blue	and	green	colors)	encoders	E	and	decoders	G.	Anomaly	 

detection	is	performed	with	an	example-guided	image	translation.	Best	viewed	in	digital	version	with	zoom.

clinical histology imagery and ground truth data. A 
training dataset with (n=110) and without (n=160) la-
beled cancerous regions (used as anomalies) is provi-
ded, as well as a test set of 129 images (49 with and 80 
without labeled cancerous regions). Raw histology 
imagery, presented in Figure 2a, is first preprocessed, 
in order to extract the tissue region (Figure 2b). We 
used the approach from IBM3, which utilizes a com-
bination of morphological and color space filtering 
operations. Patches of 512 x 512 are then extracted 
from the filtered image and filtered according to the 
tissue (Figure 2c) and cancer (Figure 2d) coverage. 
We only use patches with tissue and cancerous regi-
on coverage over 90 % (i.e. green patches). With this 
procedure, we produce a dataset of healthy (i.e. no 
overlap with cancerous label) and cancerous patches 
(i.e. > 90% overlap with cancerous label).

We train the models on random 80,000 healthy tis-
sue patches extracted from a training set of healthy 
and cancerous (coverage=0% - cancerous samples 
also contain healthy tissue) WSIs (n=270). The ba-
seline supervised approach is trained on randomly 
extracted healthy (n=25,000) and cancerous patches 
(n=25,000). The methods (i.e. supervised baseline and 
proposed ones) are evaluated on healthy (n=7673) 
and cancerous (n=16,538) patches extracted from a 
cancerous test set of WSIs (n=49). We mix healthy 
training patches of both cohorts (i.e. healthy patches 

2 https://camelyon16.grand-challenge.org/
3 https://github.com/CODAIT/deep-histopath
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from cancerous WSIs) in order to demonstrate the 
robustness of the proposed approach against a small 
percentage of possibly contaminated healthy appe-
arance data (e.g. non-labeled isolated tumor cells in 
cancerous samples).

3.2	 Unsupervised	Anomaly	Detection.
We compare the proposed method against GAN-
-based f-AnoGAN [Schlegl et al., 2019] and Style-
GAN2 [Kar- ras et al., 2020] methods. Both methods 
separately model normal appearance and perform 
latent space mapping for anomaly detection. The f-
-AnoGAN method models normal appearance using 
Wasserstein GANs (WGAN) [Arjovsky et al., 2017], 
which is limited to a resolution of 642 and uses an en-
coder-based fast latent space mapping approach. The 
StyleGAN2 method enables high-resolution image 
synthesis (up to 10242) and also implements an itera-
tive optimization procedure, based on Learned Per-
ceptual Image Patch Similarity (LPIPS) [Zhang et al., 
2018] distance metric. We evaluate the performance 

Figure	2:	Preprocessing	of	the	original	WSI	presented	in	a)	consists	of	b)	filtering	tissue	sections	and	c)	extracting	tissue	patches,	 
based	on	the	tissue	(green	≥	90	%,	orange	≤	10	%	and	yellow	in-between)	and	d)	cancerous	region	coverage	(green	≥	90	%,	 

orange	≤	30	%	and	yellow	in-between).	Best	viewed	in	a	digital	version	with	zoom.

of the proposed and StyleGAN2 methods on patches 
of 5122, while center-cropped 642 patches are used 
for the f-AnoGAN method. Additionally, we com-
pare the performance against the supervised Den-
seNet-121 [Huang et al., 2017] baseline model, trai-
ned and evaluated on 5122 patches. We evaluate the 
proposed method using Structural Similarity Index 
Measure (SSIM) [Wang et al., 2004] and LPIPS recon-
struction error metrics as an anomaly score. We use 
the same metrics (i.e. SSIM and LPIPS) as also as an 
alternative to the original f-AnoGAN anomaly score 
implementation, as well as to measure StyleGAN2 
reconstruction errors.

We first evaluate the methods by inspecting the 
distribution of anomaly scores across healthy and 
cancerous patches, as presented in Figure 3. We com-
pare our proposed approach (Figures 3a and 3b) aga-
inst f-AnoGAN (Figure 3c) and StyleGAN2 (Figure 
3d) methods and report significantly better distribu-
tion disentanglement between healthy and cancero-
us patches.

								 	(a)	Original	WSI	 				 						(b)	Filtered	WSI	 	 										(c)	Tissue	patches	 	 (d)	Cancer	patches

	 	 (a)	ProposedSSIM	 	 					(b)	ProposedLPIPS	 	 								(c)	f-AnoGAN	(orig.)	 	 (d)	StyleGAN2LPIPS

Figure	3:	Distribution	of	anomaly	scores	on	healthy	and	cancerous	histology	imagery	patches	(a)	for	the	proposed	method	(SSIM	metric),	
(b)	proposed	method	(LPIPS	metric)	,	(c)	f-AnoGAN	(original	metric)	and	(d)	StyleGAN2	(LPIPS	metric).	

Results	for	the	proposed	and	StyleGAN2	methods	are	reported	for	5122	patches,	while	642	patches	are	used	for	f-AnoGAN.
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The area under the ROC curve (AUC) and Avera-
ge Precision (AP) scores are reported in Table 1 for 
all the methods and different anomaly scores. We 
also report F1 and classification accuracy measures, 
calculated at the Youden index of the ROC curve. 
We notice that the performance of the proposed me-
thod approaches the performance of the supervised 
baseline in terms of both reconstruction error me-
trics (i.e. LPIPS and SSIM). The performance of the 
f-AnoGAN significantly improves using SSIM and 
LPIPS metrics, in comparison with the originally 
proposed anomaly score. This shows the importan-
ce of the selection of the appropriate reconstruction 
error metric. The StyleGAN2 method shows good 
distribution disentanglement using the LPIPS dis-
tance metric, while the SSIM metric fails to capture 
any significant differences between the two different 
classes (i.e. healthy and anomalous). The proposed 
method demonstrates consistent performance across 
both anomaly score metrics, as well as different eva-
luation measures.

Table	1:	Performance	statistics	(F1,	Classification	Accuracy	-	CA)	
calculated	at	Youden	index	of	Re-	ceiver	Operating	Characteristic	(ROC)	
curve	and	the	corresponding	area	under	the	ROC	curve	(AUC)	and	
Average	Precision	(AP)	scores	summarizing	ROC	and	Precision-Recall	
(PR)	curves.

AUC AP F1 CA

Supervised 0.954 0.974 0.925 0.901

Proposed	(SSIM) 0.947 0.976 0.920 0.895

Proposed	(LPIPS) 0.900 0.914 0.886 0.847

StyleGAN2	(LPIPS) 0.908 0.940 0.872 0.836

StyleGAN2	(SSIM) 0.580 0.711 0.674 0.588

f-AnoGAN	(original) 0.650 0.443 0.502 0.637

f-AnoGAN	(SSIM) 0.887 0.916 0.886 0.846

f-AnoGAN	(LPIPS) 0.865 0.902 0.875 0.830

4	 CONCLUSION
In this work, we presented an image-to-image tran-
slation-based unsupervised approach that signifi-
cantly surpasses the performance of existing GAN-
-based unsupervised approaches for the detection 
of visual anomalies in histology imagery and also 
approaches the performance of supervised methods. 
The method is capable of closely reconstructing pre-
sented healthy histology tissue samples, while una-
ble to reconstruct cancerous ones and is thus able 
to detect such samples with an appropriate visual 
distance measure. The image-to-image translation-

-based framework offers a promising multi-task 
platform for a wide range of problems in the medical 
domain and can be now further extended with the 
capabilities for anomaly detection and applied to the 
completely new set of domains where labeled data 
is hard to obtain. Additional research is needed to 
investigate effectiveness in other biomedical modali-
ties, as well as to exploit the benefits of using such a 
framework in a multi-task learning setting.

REFERENCES
[1] [Arjovsky et al., 2017] Arjovsky, M., Chintala, S., and Bottou, 

L. (2017). Wasserstein generative adversarial networks. In 
ICML, pages 214–223. PMLR.

[2] [Baur et al., 2020a] Baur, C., Graf, R., Wiestler, B., Albarqou-
ni, S., and Navab, N. (2020a). Steganomaly: Inhibiting cycle-
gan steganography for unsupervised anomaly detection in 
brain mri. In MICCAI, pages 718–727. Springer.

[3] [Baur et al., 2020b] Baur, C., Wiestler, B., Albarqouni, S., and 
Navab, N. (2020b). Scale-space autoencoders for unsuper-
vised anomaly segmentation in brain mri. In MICCAI, pages 
552–561. Springer.

[4] [Bergmann et al., 2020] Bergmann, P., Fauser, M., Sattlegger, 
D., and Steger, C. (2020). Uninformed students: Student-tea-
cher anomaly detection with discriminative latent embeddin-
gs. In CVPR, pages 4183–4192.

[5] [Campanella et al., 2019] Campanella, G., Hanna, M. G., Ge-
neslaw, L., Miraflor, A., Silva, V. W. K., Busam, K. J., Brogi, 
E., Reuter, V. E., Klimstra, D. S., and Fuchs, T. J. (2019). Cli-
nical-grade computational pathology using weakly supervi-
sed deep learning on whole slide images. Nature medicine, 
25(8):1301– 1309.

[6] [Chandola et al., 2009] Chandola, V., Banerjee, A., and Ku-
mar, V. (2009). Anomaly Detection: A Survey.

 ACM Comput. Surv., 41(3):15:1–15:58.
[7] [Ehteshami Bejnordi et al., 2017] Ehteshami Bejnordi, B., 

Veta, M., Johannes van Diest, P., van Ginneken, B., Kars-
semeijer, N., Litjens, G., van der Laak, J. A. W. M., , and 
the CAMELYON16 Consortium (2017). Diagnostic Asses-
sment of Deep Learning Algorithms for Detection of Lymph 
Node Metastases in Women With Breast Cancer. JAMA, 
318(22):2199–2210.

[8] [Huang et al., 2017] Huang, G., Liu, Z., Van Der Maaten, L., 
and Weinberger, K. Q. (2017). Densely connected convolutio-
nal networks. In CVPR, pages 4700–4708.

[9] [Huang et al., 2018] Huang, X., Liu, M.-Y., Belongie, S., and 
Kautz, J. (2018). Multimodal unsupervised image-to-image 
translation. In ECCV, pages 172–189.

[10] [Karras et al., 2020] Karras, T., Laine, S., Aittala, M., Hellsten, 
J., Lehtinen, J., and Aila, T. (2020). Analyzing and improving 
the image quality of stylegan. In CVPR, pages 8110–8119.

[11] [Lee et al., 2020] Lee, H.-Y., Tseng, H.-Y., Mao, Q., Huang, 
J.-B., Lu, Y.-D., Singh, M., and Yang, M.-H. (2020). Drit++: 
Diverse image-to-image translation via disentangled repre-
sentations. International Journal of Computer Vision, pages 
1–16.

[12] [Schlegl et al., 2019] Schlegl, T., Seeböck, P., Waldstein, S. 
M., Langs, G., and Schmidt-Erfurth, U. (2019). f-AnoGAN: 
Fast Unsupervised Anomaly Detection with Generative Ad-
versarial Networks. Medical Image Analysis, 54:30 – 44.

Dejan Štepec, Danijel Skočaj: Nenadzorovana detekcija rakavih regij v histoloških slikah s pomočjo preslikav slika-v-sliko



U P O R A B N A  I N F O R M A T I K A 2132021 - πtevilka 4 - letnik  XXIX

[13] [Stepec and Skocaj, 2021] Stepec, D. and Skocaj, D. (2021). 
Unsupervised detection of cancerous regions in histology 
imagery using image-to-image translation. In Proceedings of 
the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition, pages 3785–3792.

[14] [Tabernik et al., 2019] Tabernik, D., Šela, S., Skvarč, J., 
and Skočaj, D. (2019). Segmentation-Based Deep-Learning 
Approach for Surface-Defect Detection. Journal of Intelligent 
Manufacturing.

[15] [Tian et al., 2020] Tian, Y., Maicas, G., Pu, L. Z. C. T., Singh, 
R., Verjans, J. W., and Carneiro, G. (2020). Few-shot anomaly 
detection for polyp frames from colonoscopy. In MICCAI, pa-
ges 274–284. Springer.

[16] [Wang et al., 2004] Wang, Z., Bovik, A. C., Sheikh, H. R., 
and Simoncelli, E. P. (2004). Image quality assessment: from 
error visibility to structural similarity. IEEE transactions on 
image processing, 13(4):600– 612.

[17] [Zhang et al., 2018] Zhang, R., Isola, P., Efros, A. A., She-
chtman, E., and Wang, O. (2018). The unreason- able effec-
tiveness of deep features as a perceptual metric. In CVPR, 
pages 586–595.

�

Dejan	Štepec is	a	Lead	Data	Scientist	at	XLAB	d.o.o.	and	a	Ph.D.	student	at	the	Faculty	of	Computer	and	Information	Science	at	the	University	
of	Ljubljana.	He	completed	his	master’s	studies	at	the	University	of	Ljubljana	in	2017.	His	main	research	interests	lie	in	the	fields	of	computer	
vision	and	machine	learning.	He	is	currently	mostly	focusing	on	advancing	the	field	of	digital	pathology	with	approaches	that	require	as	little	
labeled	data	as	possible.

�

Danijel	Skočaj is	an	associate	professor	at	the	University	of	Ljubljana,	Faculty	of	Computer	and	Information	Science.	He	is	the	head	of	the	Visual	
Cognitive	Systems	Laboratory.	He	obtained	a	Ph.D.	in	computer	and	information	science	from	the	University	of	Ljubljana	in	2003.	His	main	
research	interests	lie	in	the	fields	of	computer	vision,	machine	learning,	and	cognitive	robotics.

Dejan Štepec, Danijel Skočaj: Nenadzorovana detekcija rakavih regij v histoloških slikah s pomočjo preslikav slika-v-sliko


