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 Application of tropical semiring  
for matrix factorization

Abstract
Matrix	factorization	methods	employ	standard	linear	algebra,	i.e.	linear	models,	for	recommender	systems.	With	the	introduction	
of	the	tropical	semiring,	we	can	achieve	non-linearity.	We	review	algorithms	that	use	the	tropical	semiring	for	matrix	factorization	
and	provide	their	strengths	and	limitations.	We	show	that	the	tropical	matrix	factorization	yields	better	results	than	non-negative	
matrix	factorization	for	the	synthetic	data	created	by	the	underlying	process	of	the	tropical	semiring.
Keywords:	Data	embedding,	data	mining,	matrix	factorization,	subtropical	semiring,	tropical	semiring.

Izvleček
Metode	matrične	faktorizacije	uporabljajo	za	priporočilne	sisteme	standardno	linearno	algebro,	torej	linearne	modele.	Z	zamenjavo	
operacij	in	z	uvedbo	tropskega	polkolobarja	lahko	dodamo	metodam	komponento	nelinearnosti.	V	članku	pregledamo	algoritme,	ki	za	
faktorizacijo	matrike	uporabljajo	tropski	polkolobar,	in	podamo	njihove	prednosti	in	omejitve.	Pokažemo,	da	tropska	matrična	fakto-
rizacija	daje	boljše	rezultate	kot	nenegativna	matrična	faktorizacija	na	sintetičnih	podatkih,	ustvarjenih	z	množenjem	matrik	v	trop-
skem	polkolobarju.
Ključne	besede:	Vložitev	podatkov,	podatkovno	rudarjenje,	matrična	faktorizacija,	subtropski	polkolobar,	tropski	polkolobar

1 INTRODUCTION
Data mining is one of the main challenges in com-
puter science. There is a need to develop methods to 
embed data into a lower-dimensional latent space, 
which may help with various machine learning ta-
sks. A data embedding model, such as matrix factori-
zation (MF), gives us a more compact representation 
of the data and simultaneously finds a latent struc-
ture. MF algorithms (e.g., non-negative matrix fac- 
torization (NMF) [Lee and Seung, 1999]) decompose 
the original matrix into a product of a base matrix 
and a coefficient matrix of lower dimensions. Most of 
machine learning methods for data embedding, e.g., 
[Lee and Seung, 1999, Žitnik and Zupan, 2015, Zhang 
et al., 2007, Laurberg et al., 2008], use stan- dard line-
ar algebra.

Recently, several authors considered substituting 
the standard linear algebra with other semir- ing ope-
rations, e.g., [Karaev and Miettinen, 2016a, Karaev et 
al., 2018, Karaev and Miettinen, 2016b, Karaev and 
Miettinen, 2019]. In this paper we review some algo-

rithms that use alternative nonstandard op- erations 
for matrix factorization and provide their strengths, 
limitations and potential of discovering interesting 
patterns. In our work, we are motivated by the que-
stion from [Karaev and Miettinen, 2016a], asking if a 
tropical matrix factorization can be used except for 
data analysis, also in other data mining and machine 
learning tasks, such as matrix completion. We expect 
that for the data that is not normally distributed and 
may contain a lot of extreme values using tropical se-
miring should give better results than MF methods 
that use standard operations of addition and multi-
plication.

Standard MF methods belong to the class of line-
ar models that are unable to model complex relati-
ons. With the tropical semiring, we can introduce the 
non-linearity using the maximum operator. Another 
motivation for using tropical semiring is the work of 
Zhang et al. [Zhang et al., 2018]. They showed that 
linear regions of feedforward neural networks with 
rectified linear unit activation correspond to vertices 
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of polytopes associated with tropical rational func-
tions. Therefore, to understand specific neural net-
works, we need to understand relevant tropical ge-
ometry. Since the goal is not just to model the data, 
but also to understand the underlying mechanisms, 
the matrix factorization methods that use tropical se-
miring can give us a more straightforward interpre-
tation than neural networks.

We split the remainder of the paper into the fol-
lowing sections. Sections 2 and 3 describe tropical 
semiring and related work, followed by results in 
Section 4. We conclude our paper in Section 5.

2 TROPICAL SEMIRING
The (max, +) semiring or tropical semiring Rmax, is the 
set R ∪ {–∞}, equipped with max as addition (⊕), and 
+ as multiplication (⊗). For example, 2 ⊕ 3 = 3 and 1 
⊗ 1 = 2. On the other hand, in the subtropical semi-
ring or (max, ×) semiring, defined on the same set 
R ∪ {–∞}, addition (max) is defined as in the tropical 
semiring, but the multiplication is the standard mul-
tiplication (×). By taking the logarithm of the subtro-
pical semiring, we obtain the tropical semiring, thus 
these two semirings are isomorphic.

Let Rm × n
max  define the set of all m × n matrices over 

tropical semiring. For A ∈ Rm × n
max  Rm×n we denote 

by aij the entry in the i-th row and the j-th column 
of matrix A. We define the sum of matrices A = [aij],  
B = [bij] ∈ Rm × n

max  as

(A ⊕ B)ij = aij ⊕ bij = max {aij, bij},
i = 1, . . . , m, j = 1, . . . , n, and the product of matrices 

A = [aij] ∈ Rm × p
max , B = [bkl] ∈ Rp × n

max   as

(A ⊗ B)ij = ⊕
k = 1

p

 aik ⊗ bkj = 
1 ≤ k ≤ p
max  {aik + bkj},

i = 1, . . . , m, j = 1, . . . , n.

Matrix factorization over a tropical semiring is a de-
composition of a form A = U ⊗ V, where A ∈ Rm × n

max , 
U ∈ Rm × r

max , V ∈ Rr × n
max  and r ∈ N0. For small values 

of r such decomposition may not exist. A problem of 
tropical matrix factorization is thus stated as follows: 
given a matrix A ∈ Rm × n

max  and r ∈ N0, find U ∈ Rm × r
max  

and V ∈ Rr × n
max

 such that
                                A ≅ U ⊗ V.     (1)
Similarly, we define a subtropical matrix factori-

zation. Note that the factorization in tropical semi-
ring give different results and works with different 

methods than the factorization in subtropical semi-
ring.

3 RELATED WORK
The most common examples of matrix factorizati-
on are the singular value decomposition (SVD) (see 
examples in [Golub and Reinsch, 1971]) and the 
non-negative matrix factorization (NMF) [Lee and 
Seung, 1999], where the factorization is restricted 
to matrices with non-negative entries. This non-ne-
gativity in resulting factor matrices U and V allows 
interpretation of the results. Binary matrix factoriza-
tion (BMF) [Zhang et al., 2007, Zhang et al., 2010] is a 
variant rooted from NMF where factor matrices are 
binary, while probabilistic nonnegative matrix facto-
rization (PMF) [Laurberg et al., 2008, Gaussier and 
Goutte, 2005] approximates data as samples from a 
multinomial distribution.

The Cancer algorithm [Karaev and Miettinen, 
2016a] works with continuous data, performing sub-
tropical/tropical matrix factorization (SMF) on the 
input matrix, and returning two factorized matrices. 
The algorithm’s two key ideas are: iteratively upda-
ting the rank-1 factors one-by-one and approxima-
ting the reconstruction error with a polynomial of 
low-degree. Latitude algorithm [Karaev et al., 2018] 
combines NMF and SMF, where factors are interpre-
ted as NMF or SMF features or as mixtures of both. 
Unfortunately, neither Can- cer not Latitude do not 
guarantee the convergence of the algorithms. Also, 
the authors [Weston et al., 2013] used subtropical se-
miring as part of a recommender system, which can 
be considered as a special kind of neural network.

De Schutter & De Moor introduced in 1997 a he-
uristic algorithm [De Schutter and De Moor, 1997] 
to compute factorization of a matrix in the tropical 
semiring, which we denote as Tropical Matrix Facto-
rization (TMF). They use it to determine the minimal 
system order of a discrete event system (DES). In the 
last decades, there has been an increase in this rese-
arch area, and DES is modeled as a max-plus-linear 
(MPL) system.

To implement TMF we need to know how to solve 
tropical linear systems. A tropical linear system is not 
solvable in general. For A = [aij] ∈ Rm × n

max  and c = [ck] ∈ 
Rm 

max  we call the solutions x ∈ Rn
max  of the inequality

A ⊗ x ≼ c the subsolutions of the linear system  
A ⊗ x = c. The greatest subsolution x = [x1 x2 . . . xn]T of 
A ⊗ x ≼ c can be computed by
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xi = 
1 ≤ j ≤ m
max (cj − aji),

for i = 1, 2, . . . , n, where symbol »−« denotes the stan-
dard subtraction in R [Gaubert and Plus, 1997].

TMF starts with an initial guess for the matrix U 

in (1), denoted by U0, and then computes V as the gre-
atest subsolution X of the equation U0 ⊗ X = A. Then 
authors use the iterative procedure by selecting and 
adapting an entry of U or V and recomputing it aLs 
the greatest subsolutions of Y ⊗ V = A and U ⊗ X = A, 
respectively. The b-norm defined as (Ab( = ∑

i,j
 )aij) is 

used as the objective function to get a good approxi-
mation of the input data.

In contrast to Cancer and Latitude, TMF update 
rules gradually reduce the approximation error and 
thus TMF algorithm is convergent. However, none 
of the existing tropical and subtropical algorithms 

Cancer and TMF, as defined, cannot be used for pre-
diction tasks in data mining problems. Note that in 
TMF method there is no non-negativity constraint 
compared to the NMF and its variants. However, a 
weakness of TMF compared to NMF is in its compu-
tational efficiency.

4 RESULTS
We compare TMF and NMF on synthetic data crea-
ted as a product of two non-negative random matri-
ces. The objective of synthetic experiments is to show 
that the TMF can identify the (max, +) structure when 
it exists. Therefore, we construct two synthetic ma-
trices: Ds ∈ R210 × 110 as the standard product (+, ×)  
of two random matrices of sizes 210 × 2 and 2 × 110; 
and Dt ∈ R210 × 110 as the tropical product (max, +) of 
the same two matrices.

As expected, NMF reconstructs the matrix Ds better 
as TMF, see Figure 1a. Results on Figure 1b show that 
NMF cannot successfully recover the patterns when 
dealing with specific synthetic data. Moreover, for ma-
trix Dt TMF returns a better approximation as NMF.

5 CONCLUSION
Standard matrix factorization methods perform le-
arning tasks over matrices equipped with addition 
and multiplication. The constructed models are li-
near and thus unable to model complex, non-linear 
relations. This can be addressed by introducing the 
tropical semiring with (max, +) operations.

To the best of our knowledge, we are the first 
to implement and apply TMF in data analysis. We 
showed that TMF gives better results than NMF, 
when the data is created by an underlying process of 
(max, +) semiring.

(a) Original synthetic matrix Ds and its two approxima- tions. 
Correlation between TMF and NMF approximated matrices and matrix 
Ds is equal to 0.983 and 0.990, re- spectively.

Figure	1: Original and approximated matrices of rank 3, obtained by TMf and NMf.

(b) Original synthetic matrix Dt and its two approxima- tions. 
Correlation between TMF and NMF approximated matrices and matrix 
Dt is equal to 0.974 and 0.966, re- spectively.

In our future work, we plan to adapt TMF to be 
able to predict missing values and test methods on 
real data. Because the resulting structure can be sim-
pler to interpret than with standard linear algebra, 
we believe that future research will show that semi-
rings are useful in many scenarios.
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